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Improvements in Design Oriented
Equivalent Plate Modeling
of Wing Structures
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Chairman of Supervisory Committee: Professor Eli Livne
Department of Aeronautics
and Astronautics

Improvements in equivalent plate modeling of aircraft wings are presented. Formula-
tions for wing mass, stiffness, and loads using Classical Plate Theory and First Order
Shear Deformation Plate Theory are given in a general manner allowing versatility in the
selection of displacement Ritz polynomials. A new technique for approximating the stiff-
ness of an array of spar webs with the stiffness of an equivalent sandwich core is devel-
oped. A formulation allowing wing zones modeled with Classical Plate Theory and First
Order Shear Deformation Plate Theory to be used together is also presented.

Numerical tests were performed to verify the validity of the new formulations. Tests
of a thick, high aspect ratio wing showed that selecting low order Ritz polynomials for the
linear in-plane displacements of a symmetric wing can lead to a significant reduction in
model order while retaining acceptable accuracy. Additional tests of the thick, high aspect
ratio wing and a typical supersonic transport wing showed that an array of spar webs may
be accurately replaced by an equivalent core leading to substantial savings in computation
time.

Results from this work will allow complex wing configurations to be modeled using
equivalent plates with accuracy comparable to finite element analysis, yet with much
greater computational efficiency. The results add support for the use of equivalent plate
modeling as the primary wing structural analysis tool in multi-disciplinary design optimi-
zation of aircraft structures.
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Introduction

Background

In the early days of mathematical modeling of aircraft wing structures, equivalent
beam models were used to suitably represent isotropic high aspect ratio wings. With the
growing pursuit of fast subsonic and supersonic flight in the late 1940’s, potential wing
configurations took on a variety of shapes with low aspect ratio and thin cross section.
The new wing configurations, which became subject to chordwise bending, could no
longer be accurately modeled using classical beam theory. Attempts in the 1950’s to

‘model low aspect ratio wings as wide beams and equivalent plates were essentially aban-

doned with the development of high speed computing machines and matrix methods of
structural analysis (GR61). Finite element (FE) techniques viably emerged from the new
computing capability. It made possible the analysis of complex low aspect ratio wing
structures giving stress, deflection, and vibration information with acceptable accuracy.
The finite element method grew in acceptance as its reliability was tested, and it has now
become industry’s standard analysis tool for wing design (SCH81).

Difficulties were encountered, however, in the use of the finite element method during
the preliminary stages of wing design when structural shape variations are examined.
Finite element models lead to large matrix equations that were computationally intensive
even with the new computing power. Since the finite element mesh had to change corre-
sponding to shape changes, comparison of many alternative planforms proved to be cum-
bersome and time consuming. More complexity was added to the modeling problem
when fiber composite materials came into use. Thus, interest in the development of alter-
native, computationally efficient wing models, tailored towards wing shape optimization,
was rekindled.

Two different approaches to the problem have emerged: use of expedited finite ele-
ment modeling and use of equivalent plate modeling. Major advances have been made in
improving finite element modeling for use in design oriented structural analysis (HG92).
In the area of airframe structures, numerical and analytical methods were used to obtain
design sensitivity information with respect to both sizing and shape design variables
(HA93,LAN94). Another improvement has been the development of integrated FE / auto-
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mated mesh generation, which allows changes in planform and airfoil shapes to be han-
dled efficiently (HA93).  Although advances in modeling and improvements in
computational power have made practical the shape optimization of finite element models
having many design variables, the computational price remains high. In multi-disciplin-
ary design optimization, where the structural analysis is just part of a wider optimization
scheme, the cost of using a finite element approach may still be too expensive (LIV90).

The full capability of wing structural modeling based on equivalent plates is still
being explored. Equivalent plate models have been found capable of capturing spanwise
and chordwise bending of various planforms using a small number of degrees of freedom.
An equivalent plate model based on Classical Plate Theory (CPT) was used in the
aeroelastic tailoring and structural optimization (TSO) computer program
(LRB77,MC83). This simplified capability has been used extensively for preliminary
wing design with good results compared to finite element analysis for real wings such as
those of the YF16 and F15 fighter aircraft (LRB77,TR80). The high computational effi-
ciency of TSO coupled with its limitation of handling only a single trapezoidal planform
motivated the development of an equivalent plate approach capable of handling planforms
composed of multiple trapezoidal sections, with and without symmetry about the wing
mid-surface (GI86,GI89). Better modeling of the internal wing structure was also
included. Results showed that equivalent plate models could accurately predict stresses as
well as deflections and mode shapes for wings with complex planforms while offering sig-
nificant savings in computer time. This capability was extended to include analytically
derived design sensitivities with respect to the shape and sizing design variables (LIV90).
It was also shown that the planform shape could be modeled such that all integration could
be done analytically, thus eliminating the need for coordinate transformations and numeri-
cal integration.

A study of equivalent plate modeling applied to a potential High Speed Civil Trans-
port (HSCT) wing revealed some limitations of plate models based on CPT (LSB93).
Results from the study showed that a CPT based equivalent plate model does not give
good results for a wing with few spars and ribs and low transverse shear stiffness. In light
of this finding, a new equivalent plate modeling capability was developed, based on First
Order Shear Deformation Plate Theory (FSDPT), which showed much better correlation
with finite element results for the HSCT wing (LIV194,1L.1V294,L.SB93).




Motivation

The newly developed equivalent plate structural modeling approach using FSDPT
provided more accurate results than a CPT based model for certain wing configurations.
Yet in using FSDPT, some of the computational efficiency sought in using a plate model-
ing approach was lost. The FSDPT capability (in its form presented in LIV194) had limi-
tations that led to increased computational cost. Among the causes for this increased
computational effort was the way in which polynomial series were chosen to represent
displacement functions in the model. Originally, all displacement functions had to be rep-
resented by x-y polynomials of the same order (LIV194). Since five displacement fields
are involved with FSDPT modeling compared with one field (w deflection) in CPT, this
resulted in a significant increase of the size of the system of equations. Also, a significant
computational burden was carried by the original FSDPT approach because of the inclu-
sion of spar webs and rib webs in the model. The computational time required to calculate
the mass and stiffness contributions from an array of many webs became very time con-
suming.

For a low aspect ratio wing, like that of the HSCT, which has a complex planform
geometry, low transverse shear stiffness, and multiple control surfaces, equivalent plate
models based on CPT alone and FSDPT alone are inadequate. It has already been shown
that a CPT based model cannot capture the transverse shear affects of such a wing
(LSB93). A FSDPT based model gave good results with added computational cost. How-
ever, the computational cost would grow significantly if several control surfaces also mod-
eled using FSDPT were included.

Facing these limitations of the current equivalent plate capabilities, it is important to
make improvements in plate modeling to retain the accuracy of the FSDPT approach
while bolstering computational efficiency. Specifically, it is sought to generalize the cur-
rent FSDPT capability to handle multiple “zones” (LSB93) and allow the order of each
displacement polynomial to be independently assigned. To further reduce computation
time it is desired to approximate the stiffness contribution of an array of spar and rib webs
with the stiffness of an equivalent sandwich core (LIV194). Thus, instead of calculating
stiffness and mass contributions of spar and rib webs one by one, a single equivalent core
is evaluated once per new wing shape. Finally sought is a new capability allowing zones
based on FSDPT to be used in conjunction with zones based on CPT, thus allowing wings
such as that of the HSCT with control surfaces to be accurately and efficiently modeled

using equivalent plates.




Scope of Work

Following this introduction, Chapter 1 discusses the conventions and Ritz solution
method used in the wing modeling problem. Chapters 2 and 3 present the equivalent plate
formulations for wing structural mass, structural stiffness, and loading conditions using
Classical Plate Theory and First Order Shear Deformation Plate Theory respectively.
Both formulations are derived for numerical analysis such that they allow the order of
each displacement polynomial to be independently chosen. Chapter 4 discusses zone con-
nections and boundary conditions, including a new capability for combining CPT and
FSDPT zones. Chapter 5 presents a method used to approximate the stiffness of a spar
web array by the stiffness of a sandwich core. Chapter 6 compares the results from use of
the new plate modeling capabilities with available data for two different test wings. Chap-
ter 7 concludes with a summary and discussion of possible extensions of this work.

Detailed derivations of the equivalent plate formulations in Chapters 2 and 3 may be
found in Appendices A and B. Appendix C contains analytical expressions for all inte-
grals encountered in the wing math model. Appendix D contains data and figures from the
test wings. Appendix E contains information concerning the use of the program CON-
NECT and supporting subroutines developed during this research effort.




Chapter 1:
Wing Model

1.1 Overview

In this chapter the parameters for a mathematical wing model based on equivalent
plate theory are established, and the solution technique is discussed. The chapter begins
by discussing the configuration of a general wing box structure and defining the conven-
tion used for the model’s shape design variables based on planform geometry and wing
depth distribution. Next discussed is the convention used to express wing construction
parameters as polynomial series, where the coefficients are the model’s sizing design vari-
ables. Wing material properties are discussed, and constitutive relationships are given for
the wing structural components. Following this is a presentation of the Ritz solution tech-
nique as applied to the wing model. Here the stiffness matrix [K], mass matrix [M], gener-
alized displacements vector {gq}, and generalized load vector {P} are defined. Briefly
discussed are details of the static solution and eigensolution. The chapter concludes with

a discussion of output grid specification.

1.2 General Wing Box Configuration

The general wing box configuration considered in this work consists of skins, spar
caps, rib caps, spar webs, and rib webs as shown in Figure L.1. Skins may be constructed
of multiple unidirectional fiber composite laminae. The thickness and distance from the
wing mid-plane of each skin lamina may vary over the area of wing. Stiffening spars and
ribs are attached to the upper and lower skins generally in some systematic array. Along
the length of a spar or rib the cap distance from the wing mid-plane may vary. The cap
areas of both spars and ribs also may vary linearly along their lengths. Spar webs and rib
webs, like skins, may also be constructed of multiple composite layers and are intended
primarily to provide shear stiffness. Spar webs connect spar caps on the upper surface
with their parallels on the lower surface. Rib caps do the same for parallel rib caps.




Composite Skin

Span
Direction

Chord
Direction P g Spar web

Rib web

Figure 1.1: Wing Box Configuration

1.3 Wing Planform Geometry

The geometry of a general wing planform is defined in a global x-y-z coordinate sys-
tem. The x-y plane (z=0) corresponds to the reference surface of the wing. A typical wing
planform is shown in Figure 1.2. The whole planform may be divided into several
“zones”. Each zone may have its geometry defined in its own zonal coordinate system
and may use unique Ritz polynomial functions to represent its structural displacements.

All zones, however, share a common z axis.

zone 2

Figure 1.2: Multi-zone Wing Planform
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Figure 1.3: Skin Panel Shape Design Variables

Each zone is composed of one or more upper and lower trapezoidal panels. Each

panel is defined by 6 shape design variables y;, Yz, Xrr, Xpg» X41, and X,z as shown in Figure
1.3. The variables y, and y, define respectively the left and right y coordinates of the sides

of the panel which are parallel to the x-axis. The variables xz; and xz define respectively

the front left and front right x coordinates of the panel. Likewise, the variables x,; and x,z
define respectively the aft left and aft right x coordinates of the panel. A zone generally

will also have associated spars, ribs, and webs. Each spar is defined by the endpoints of a

line segment. The 4 shape design variables sy;, syg, sX;, and sx define a spar line’s geom-

etry as shown in Figure 1.4. A spar is generally at some angle A to the y-axis.

(sx1,871)

(5XpSyR) A n

YRIB

(rxpp,ryp)

(rxap,ryD)

(rxprryR)

(rxap,TyR)

Figure 1.4: Spar and Rib Shape Design Variables

Ribs are
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parallel to the x-axis and are defined by 7 shape design variables ry,, ryg, rXp, "Xpg, Y
rYap and ypp. The first 6 of these variables define a trapeioid in the same manner as the
panel trapezoids are defined. The variable y;then uniquely defines a rib line of constant
y value, whose ends lie on the front and aft lines of the trapezoid as shown in Figure 1.4.
Spar and rib web lines match the lines of the spar and rib caps they connect.

Zones may also have associated “attach lines”, “attach points”, and “free moving
points”. An attach line identifies the common surface between two adjoining zones. In a
particular zone’s coordinate system, an attach line is defined by the 4 variables aty;, atyg,
atx;, and atx; which give the left and right x and y coordinates of the line’s endpoints. An
attach point lying on an attach line is defined simply by its x-y coordinates. At attach
points concentrated computational springs may be used to impose boundary conditions or
to represent the local stiffness of an attachment between zone boundaries (I.IV90,
LIV194). Free moving points are also defined by their x-y coordinates and are used to rep-
resent points on the wing where mass is lumped or where concentrated force loads are
applied (LIV90). '

1.4 Wing Depth and Construction

The depth distribution of a wing component is defined as its distance from the z=0
reference plane. A depth distribution, expressed as a simple polynomial series, may be
defined across an entire zone for each skin layer and each array of spars and ribs. For
example, the depth distribution across a single zone for the jlth skin layer is given by

N mh, nh
h. (x, = H,-x 'y "

]1( y) kgl jl, y (1)
where the coefficients H 1, are shape design variables, and the powers mh, and nh, may be
chosen to specify a polynomial in x and y containing Nk, terms (Actually, the powers asso-
ciated with the kth term of the jith layer should be denoted mhﬂk , nh m ). For a wing whose
skin thickness is small compared to its depth it is justifiable to use only 2 depth distribu-
tions per zone. In such a case, all skins, spars, and ribs on the upper surface may be
assigned one distribution A,(x,y) while those on the lower surface may have a second dis-
tribution Ay (x,y) (LIV194).

Upper and lower wing skins may be composed of several layers of fiber composite
material. Each layer may have its principal fiber direction oriented at some angle [3 to the

x axis. For each trapezoidal panel the thickness of the jlth layer may be defined by a sim-




ple polynomial series composed of Nt; terms and having the form
Nt
t(6y) = Y Ty Xy

P (1.2)
where the coefficients Tﬂk are sizing design variables, and the powers mt, and nt, are pre-
assigned. Again it should be mentioned that the powers associated with term k in layer ji
should be denoted m¢ o My However, the simpler notation in Eq. 1.2 is adequate at this
point for illustrative purposes.

Spar and rib cap areas may vary linearly along their respective longitudinal axes. The
cap area of the jsth spar may be expressed as a linear function of y by

Asl’js ) = ASPOj: +A3plisy (1.3)

where the coefficients A 50, and A are sizing design variables. The cap area of the
js

sply
jrth rib varies linearly with x and may be expressed as

A, (x) =A +A . x
rb;, b0;, rbl;, (1.4)

where the coefficients ArbOj, and A , 1, are sizing design variables.

Spar and rib webs are constructed similarly to the wings skins in that each composite
layer of a web may have a varying thickness and independently oriented fiber direction.
Equation 1.2 may be used to express the thickness of a single web layer. However, for
purposes of this work it is desirable to treat the thickness of each layer as varying linearly
like the cap areas and having just 2 polynomial coefficients. The spar web thickness then
varies linearly in y while the rib web thickness varies linearly in x.

Other sizing design variables include concentrated masses and the stiffness coeffi-
cients of concentrated springs. A concentrated mass represents a lumped mass applied at
a free moving point or an attach point as discussed in the previous section. Concentrated
springs may be used to represented local stiffness at an attach point. Large spring stiffness
coefficients may be used in a penalty method to impose a zero displacement and zero rota-
tion boundary condition or to enforce continuity at a point common to 2 zones. Rotational
springs may be used to represent hinge and actuator stiffness. Carefully selected spring
stiffness coefficients may be used to compensate for differences between numerical testing
and experiment by representing the actual flexibility of an experimental support setup
(LIV194,LRB77,LSF88,KA92,GR61).
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1.5 Material Properties

The material density p of each wing component is used in determining the wing’s the-
oretical mass. Material stiffness properties are used in constitutive laws for each wing
component to determine the wing’s stiffness.

The constitutive relationship between in-plane stresses © and strains € for the jlth skin

layer is expressed as

xx exx
ny = [Q]]l Syy (15)
ny ny '

where the material matrix [Q]; contains the stiffness properties of the composite layer
appropriately transformed into the x-y axes system based on the orientation of the layer’s
principle material axes. Each spar cap and rib cap is treated as having uniaxial stiffness
based the cap’s equivalent Young’s modulus E.

A spar web lies in the M-z plane where M is the coordinate of the web’s associated
spar line as seen in Figure 1.5. As discussed in Chapter 3, it is assumed that €..=0. There-
fore, the constitutive relationship for the jlth web layer is expressed as

{ O } _ (o) { - }
G e (1.6)

nz nz

where the material matrix [Q] ji contains the stiffness properties of the composite layer

upper cap line

lower cap line

Figure 1.5: Spar Web and its Associate Axes
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appropriately transformed into the -z coordinate system based on the orientation of the
layer’s principle fiber direction (LIV194). A rib web is treated in a similar manner except
that it lies in an x-z plane. The constitutive relationship for the jlth layer of a rib web is

{ s } _ [Q]ﬂ{ - }
c, e (1.7)

given by

XZ:

The o, stress in a web can be retrieved once the deformation and strains are determined.

1.6 Ritz Solution Technique

The Ritz method is used to obtain an approximate solution for the generalized dis-
placements that minimize the total energy of the wing box structure. The total energy E,,
associated with the wing model is

E =U+Q-T
tot (1.8)

where U is the potential energy stored in the structure through deformation, Q is the work
of the applied loads moving through the corresponding structural deflections, and T is the
kinetic energy associated with the mass of the structure (GI86). These energy terms are
expressed as functions of the displacements of the structure. All structural displacements

can be individually expressed as a polynomial series of the general form

Fooy. D) = zc(n Xyt

i=1 (1.9)

where the coefficients c(#), are unknown and vary with time, and the powers mt; and nt; are
predetermined from possible polynomial combinations of increasing order as shown in
Figure 1.5. Since the displacement polynomials are used in determining the energy of the
structure, the energy terms U, Q, T, and E,,, thus become functions of the unknown ¢(#);.
The Ritz solution requires
aEtOt
5. 0
¢ - (1.10)
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Figure 1.6: Complete Polynomials Through 7th Order

Application of Eq. 1.10 to a vibrating wing under harmonic excitation results in a system
of simultaneous equations expressed in matrix form as

(k] {c} —0?[M] {c} - {P} =0

(1.11)

where [K] is the symmetric stiffness matrix derived from the potential energy, [M] is the

symmetric mass matrix derived from the kinetic energy, ® is the structure’s natural vibra-

tional frequency, {P} is the generalized load vector derived from the applied load condi-

tions, and {c}is the vector of unknown generalized displacements (GI86). Chapters 2 and

3 discuss how the stiffness matrix, mass matrix, and load vector are derived for a particu-

lar wing using different plate theories.

1.7 Static Solution for Displacements and Stresses

For a single static loading condition, Eq. 1.11 becomes

(k] ta = (P} )

where {g} is now the vector of unknown generalized displacements. This equation holds

for linear structural systems. The solution subroutines employed in this work make use of
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the symmetry and inherent sparsity of the stiffness matrix [K] (FE75). The solution
method is based on a modified Cholesky decomposition technique which factorizes [K] as

(K] = [L][D][L]"
(1.13)

where [L] is a lower triangular matrix, and [D] is a nonsingular diagonal matrix. The solu-
tion vector {gq} is then obtained through a series of forward and backward substitutions
using the factored matrices (FE75,LIV90).

1.8 Eigensolution for Natural Vibration Frequencies and Modes

For a freely oscillating undamped linear structure, Eq. 1.11 becomes

[k-a’M] {q} = [0]
(1.14)

where {g} is now the vector of unknown generalized displacements defining the vibration
mode shape which corresponds to the natural frequency w. The QZ algorithm (GVL89) is
used here to find eigenvalues and eigenvectors of the linear generalized eigenvalue prob-
lem in Eq. 1.14.

- VL Y& y
_ — i
Xpy f--n-- - '
FL \\
n \-\::._ :
-1 1 gt
ﬂ T
)_CAL """
1 X
g

Figure 1.7: Panel Output Grid
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1.9 Output

From the static and dynamic solutions, it is possible to give the static deflection, static
stress, and modal deflection at any point on the wing model. It is advantageous to be able
to establish a grid of output points on panels, spars, and ribs as desired. As shown in Fig-
ure 1.6 a panel output grid may be specified over a square where -1< § < 1 and -1<n <1
by choosing the number of points desired in the x and y directions. This grid of points is
then mapped onto a selected trapezoidal output panel yielding a grid of output points in
the x-y axis system. The same thing may be done in one dimension for spars and ribs.




Chapter 2:
Equivalent Plate Formulation Using
Classical Plate Theory

2.1 Overview

This chapter contains the Classical Plate Theory based formulation of the mass, stiff-
ness, and load contributions needed to solve for the generalized displacements in Eq. 1.11.
The chapter begins with a discussion of the assumptions of Classical Plate Theory and the
ensuing displacement and strain relationships. Following this foundation is the derivation
of the wing skin contribution to the mass and stiffness of the system. Next discussed is the
derivation of the spar cap contribution to mass and stiffness. The derivation of the rib cap
contribution to mass and stiffness is given as well.  Also included is a discussion of the
contribution of concentrated masses to the mass of the system. Following this is the for-
mulation of the load vector including concentrated force load and distributed pressure load
conditions. Finally presented is the method used to calculate displacement and stress out-
put from the generalized displacement solution. Appendix A includes detailed derivation
of mass and stiffness contributions from the wing structural components.

2.2 CPT Displacements and Strains

Classical Plate Theory (CPT) is the name given to the small-deflection theory of
bending of elastic thin plates (RE84). The central assumption of CPT, known as the Kir-
choff-Love assumption, is that planes normal to a plate’s mid-surface will remain plane
and normal to the plate’s mid-surface after the plate is deformed in bending (RE84,JO75).
This assumption is equivalent to ignoring the shear strains ¥,, and v,, for a plate in the x-y
plane. Because the plate is thin, the transverse normal strain €, is also negligible making
this in essence a plane stress problem. Because wing symmetry about the x-y plane is
assumed here, there are no in-plane displacements at points on the plate’s mid-surface.

According to the above assumptions, the transverse displacement w is a function of x
and y only. The Kirchoff-Love assumption allows the displacement u in the x direction

and the displacement v in the y direction to be given in terms of w by
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—za—w = —Zw
dx * 2.1)
v = —za—w = —Zw
dy e 2.2)
The in-plane strains &, €,, and 7,, are given by
L ——
XX ax XX (2.3)
£ = .,a_v = —ZWwW
¥y y yy (2.4)
ou  dv
=N - 2w,
Txy dy " dx Worxy (2.5)

(LIV90,RE84). It is evident that all the displacements and strains are functions of the

| independent transverse displacement w.
In the polynomial Ritz solution method described in Chapter 1, it is necessary to
define the displacement function w(x,y,f) as a polynomial series of the form shown in Eq.

1.9 and having Ng,, terms. This polynomial function may be expressed in vector form by

T
wxyt) = {a,(xn} {q,()}
(2.6)

where

T mgqg. nqg.
fa,(6y)} = {oowx oy .0
2.7)

and {g,(f)} is a column vector containing the time dependent coefficients that ultimately
become the unknown generalized displacements. Both vectors contain Ng,, terms. This

vector form for w(x,y,t) will be used in the mass and stiffness matrix formulations.
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2.3 Skin Contribution to Mass and Stiffness for a CPT Zone

The contribution to the kinetic energy T of an infinitesimal skin element dx by dy of
the jlth skin layer of a single trapezoidal panel is
1 .2
ATy = 5Pty (R Y)W (%, y, 1) dxdy 28
where pj, is the constant material density of the skin layer, and 5;(x.y) is the thickness of the

skin layer. Using Eq. 2.6 for w(x,y,f) and integrating over the whole trapezoidal panel

area gives

1 T T
T, = ijl”tjl (x,y) {4, {a,} {a,} {4,}dxdy 09
yx .

Summing the kinetic energy contributions of the NI, layers of the panel’s upper skin, mul-
tiplying by 2 because of wing symmetry, and summing over the Np trapezoidal panels in a
zone leads to the total skin mass matrix, Ng,, x Ng,, in dimension, given by

Np Niy T
(M1, =2 Y pufftixy {a,} {a,} dxdy 0.10)
ip=1jl=1 yx :

where #,(x,y) is a polynomial function of x and y as given in Eq. 1.2. Each element of
[M..].. 1S, thus, a linear combination of trapezoidal area integrals of the form

Ip(m,n) = “xmyndxdy

T @1

Appendix C discusses how an integral table for different m and n combinations may be
analytically constructed for each trapezoidal panel.
The contribution to the potential or strain energy U of an infinitesimal skin element dx

by dy of the jlth skin layer of a single trapezoidal panel is

U, = 2 13" D1, {x} dxdy
b2 / 2.12)
where
W’xx
{x} = -7 w,
4 (2.13)
2w,
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using Eqgs. 2.3, 2.4, and 2.5; and [D]; is the plate bending stiffness matrix for layer ji
defined by

[D]]l = J[Q] ﬂZZdZ

Z (2.14)

(JO75, LIV90). The matrix [Q];, 3 x 3 in dimension, is the jith layer’s constitutive matrix

referenced to the x-y axes-as discussed in Section 1.5. Since CPT zones assume wing

symmetry, the depth distribution & will be treated here as the distance between the upper

and lower skins. Referring to Figure A.2, the jith skin layer lies between the coordinates
z=h/2-t,/2 and z=h/2+1,/2 such that the z integral from Eq. 2. 14 is given by

2 2
(het)12 2 h [ 1(tjl):|
T ddz = —t,| 1+ 3| £
(h=1;) 12 47 3\ h (2.15)

Since it is assumed that the wing thickness is much smaller than the wing depth (¢,/h <<1),
the right hand side of Eq. 2.15 can be simplified to hztﬂ/4 (LIV90). Substituting Egs. 2.13
and 2.15 into Eq. 2.12 and integrating over the panel area gives

2 T
Uy = %JJ(’L’?)—)@ (x.y) {g,} W1 [Q] W] {q,}dxdy
yx

P (2.16)
where
— T_ ) _
{aw,xx} mq;—2 ng;
...,mqi(mc],-—l)x MR
T
_ A i _ mq; ng;—2
[W] {a,t wongi(ng,-Dx "y . (2.17)
—1 ng,-1
T L 2mg.n -xm% RN
2 {aw,xy}. L ql q; Yy .

(LIV90). [W]is 3 x Ng,, in dimension. Summing the potential energy contributions of the
NI, layers of the panel’s upper skin, multiplying by 2 because of wing symmetry, and
summing over the Np panels in the zone leads to the total skin stiffness matrix, Ng,, x Ng,,

in dimension, given by
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| NI,
2 ZHh (x, y) 1 (x,y) [W]T[Q]jl[W] dxdy

zp 1jl=1yx

] =
Bl o (2.18)
where h(x,y) and #,(x,y) are polynomial functions of x and y as defined in Egs. 1.1 and 1.2.
Each element of [K,],, is a linear combination of area integrals of the form Irg(m.n) as
defined in Eq. 2.11.

2.4 Spar Cap Contribution to Mass and Stiffness for a CPT Zone

The contribution to the kinetic energy T of an element of length dn of the jsth spar is

1 2
dT. = —pA(T]) W dn
g2 R (2.19)
where 1) is the coordinate along the spar axis rotated from the y axis by an angle A, p;, is
the constant material density of the spar, and the cap area A - is expressed as a function
js
of  (LIV90). Referring to Figure A.3, all 1 dependence in this equation may be changed

to y dependence using

L dy
dn = dy - =
N sy, T cosA (2.20)

The spar cap area may be expressed as a linear function of y, and the variable x may also

be expressed in terms of y using the spar line equation

x(y) = Sly+852
(2.21)

Substituting Egs. 2.6 and 2.20 into Eq.2.19 and integrating over the length of the spar

gives

_ L Pis gy oy e Y {ad {atd
Js 7 2cosAJy=sy, Y 5Pjs e Gt 1y Ty i @ (2.22)

Summing the kinetic energy contributions of the Ns; spars on the upper wing surface and
multiplying by 2 because of wing symmetry leads to the total spar mass matrix, Ng,, x Ng,,

in dimension, given by
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N
y ., Sy pjs- :syRA Td
Myl o0 = 2 cos AJy=sy, ) Spjs{aw} la,} dy

Jjs=1

(2.23)

where the spar cap area is given by Eq. 1.3. Using Eq. 2.21 for x, each element of [M],,

becomes a linear combination of line integrals of the form

| =SYp m n
Sly+ 82 d
cosAJy=sy, ( y+ ) yay (2‘24)

Igp(m,n) =

Appendix C discusses how an integral table for different m and n combinations may be
analytically constructed for each spar line integral.
The contribution to the potential or strain energy U of an element of length dn of the
Jsth spar is ‘
2

_ 1 h(m)~ 2
dU; = SEA(M), — WMl

(2.25)

where E, is the longitudinal modulus of elasticity, the cap area A P is a function of N, and
h(m) is the wing depth distribution along the spar line (LIV90). Itis necessary to replace 1
dependence with y dependence in this expression. Referring to Figure A.3 and Eq. 2.20
the transformation for the bendihg strain is given by |
SYp =Sy L)Zw
Yy

_ 2 _
W, . = COS?A-w, _(
co Wiy 2

m (2.26)
The cap area may be expressed as a linear function of y as shown in Eq. 1.3, and the depth
distribution may be expressed as a function of y as shown in Eq. A.74 using the spar line

equation of Eq. 2.21. Substituting Eqs. 2.20 and 2.26 into Eq. 2.25 gives

1 h(y) 2
— <A)3
dU. (cosA) EjsA ), 5 w,. dy

72 2.27)
Using Eq. 2.6 for w(x,y,t) and integrating over the length of the spar gives
1 —sy 0N
— 3 =SYr
Uy, = 5 (cosh) Ejsji:syLA () 5,3
(2.28)

T T
Aay,t Aa,,t {a,.,,} g, dy




21

where in {a,} all x terms are replaced by Eq. 2.21 before differentiation with respect to y.
Summing the potential energy contributions of the Ns; spars on the upper wing surface
and multiplying by 2 because of wing symmetry leads to the total spar stiffness matrix,

Ng,, x Ng,, in dimension, given by

NsU T
E,, (cosA)” " A (y) ) R () aye,} fay., ) dy
Pjs yy yy

sA y=syy,
20 (2.29)

SP tot

Each element of [K,],,, becomes a linear combination of line integrals of the form Igp(m,n)
as defined in Eq. 2.24.

2.5 Rib Cap Contribution to Mass and Stiffness for a CPT Zone

The contribution to the kinetic energy T of an element of length dx of the jrth rib is

1 2
dT. = zp.A(x) , Wwdx
Jro 2Ry (2.30)
where p;, is the constant material density of the rib, and the cap area A b, is a linear func-
tion of x (LIV90). Using Eq. 2.6 for w(x.y,f) and integrating over the length of the rib
gives

1 x= rxA
T, = 5P ere A (1) 1 {4, tata,) {a,}dx 031

where the limits of integration rx, and rx, are shown in Figure A.4. Summing the kinetic
energy contributions of the Nry ribs on the upper wing surface and multiplying by 2
because of wing symmetry leads to the total rib mass matrix, Ng, x Ng, in dimension,

given by

Nry, T
=2 0, i A () L) {a,} da

jr=1

tot

(2.32)

where the rib cap area is given by Eq. 1.4. With y equal to a constant ygg along the length
of the rib, each term of [M,,],,, becomes a linear combination of line integrals of the form
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X=TXy
I,,.(m,n) = yg “xMdx
RB RIB )x=rx, (2.33)
Appendix C discusses how an integral table for different m and n combinations may be
analytically constructed for each rib line integral. '
The contribution to the potential or strain energy U of an element of length dx of the
Jjrth rib is
1 h (x)

dU;, = EA (), 2 dx o34

where E, is the longitudinal modulus of elastlclty, the cap area A, . is a linear function of
x, and A(x) is the wing depth distribution along the rib line (LIV90) Using Eq. 2.6 for
w(x,y,t) and integrating along the length of the rib gives

1 X=TX h (x) 2 T r
Ujr = EEjrjx=rxiA (x) rber {qw} {aw’xx} {aw’xx} {qw} dx (2 35)

Summing the stiffness contribution of the Nr, ribs on the upper wing surface and multi-
plying by 2 because of wing symmetry leads to the total rib stiffness matrix, Ng,, x Ng,, in

dimension, given by
NrU T

rx
rb tot 22 ]er rxA ()C) rb h(x) {a ’xx} {aw’xx} dx

o (2.36)

where A(x) is given by Eq. 1.1 holding y constant, and the rib cap area is given in Eq.1.4.
With y equal to a constant y; along the length of the spar, each element of [K,,],,,becomes
a linear combination of line integrals of the form Irz(m,n) as defined in Eq. 2.33.

2.6 Concentrated Mass Contribution for a CPT Zone

Concentrated masses having a magnitude of Mjc may be designated at any point
(X;..y;) on the wing structure. The contribution to the kinetic energy T of the jcth concen-
trated mass is

1~ .2
T. = —'M W (x]C7 yjcy t)

Je 20 e (2.37)




23

(LIV90). Using Eq. 2.6 for w(x;,.y;.,t) and summing over the Nc masses of a zone leads to

the total concentrated mass matrix, Ng,, x Ng,, in dimension, given by

Nc . T
[Mcm] tor ZMjC{aw (xjc’ yjc)} {aw (xjc’ yjc)}

je=1 (2.38)

2.7 Load Contributions for a CPT Zone

The generalized load vector {P} defined in Chapter 1 may contain contributions from
distributed pressure loads and concentrated force loads both acting in the vertical direc-
tion. A distributed pressure load over a trapezoidal panel area may be defined by a poly-
nomial load function with N¢ terms given by ’

& mey o
0(xy) = 2@ -x 'y’
i=1 (2.39)
The contribution to the work Q of a load distributed over an area dx by dy and working
through the wing deflection is given by
dQ = ¢ (x,y)w(x,y, 1) dxdy
(2.40)

Using Eq. 2.6 for w(x,y,f) and integrating over the panel area leads to the generalized load

vector contribution of the distributed load given by

No
{P.} = ztb. x 'y {a,}dxdy
Y4 ’y (2.41)

The vector { P¢} contains Ng,, terms, and its ith term may be expressed as a linear combi-

nation of area integrals of the form Irx(m,n) as defined in Eq. 2.11, where

m = m(bj+mql.
(2.42)

n = n([)j+nql.
(2.43)

For a concentrated force load of magnitude P acting at the point (x;.y;.), the load vector

contribution is simply
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{P} = P{a,}
- v (2.44)
where {a,} is evaluated at (x;.y,). For a single zone, the total generalized load vector
{P},, is obtained by adding the load contributions from all distributed and concentrated

loads acting on the zone.

2.8 Displacement and Stress Output

The CPT zone generalized displacements resulting from the solution of Eq. 1.12 may
be used to calculate the static displacement and stress at any point on the zone. Choosing
a point (X,.»Y..) from an output grid, the vertical deflection w at that point may be deter-
mined simply by using Eq. 2.6 where {a,} is evaluated at the point. Using Egs. 1.5, 2.3-
2.5, and 2.17, stresses at a point (x,,,,Y...) on the jlth skin layer may be determined from

xx €xx
ny = [0] jl Syy = —z[0] jl [W] {qw} (245)
Cw * i Ty

where [W] is evaluated at the point. Using Egs. 2.6 and 2.26, the uniaxial stress at a point
(X,uYow) ON the jsth spar may be determined from
) T
O, = —zEjsw,m1 = —zEjscos A {aw,yy} {qg,} (2.46)
where {a,, y y} is evaluated at the point (again, the x powers of {a,,} are replaced by Eq.
2.21 before the differentiation with respect to y). Similarly, the uniaxial stress at a point
(X,rYore) ON the jrth rib may be determined from
T
Gjr = _ZEjrw’xx = _ZEjr{aw’xx} {qw} (2.47)
where {a, } isevaluated at the point.
The generalized displacements for a particular natural frequency resulting from the
solution of Eq. 1.14 may be used to calculate the mode shape displacement at any point on
the zone. As with static deflection, the modal deflection w at a point (x,,.y,,) may be

determined by using Eq. 2.6 where {a,,} is evaluated at the point.




Chapter 3:
Equivalent Plate Formulation Using
First Order Shear Deformation Plate Theory

3.1 Overview

This chapter contains the First Order Shear Deformation Plate Theory based formula-
tion of the mass, stiffness, and generalized load contributions needed to solve for the gen-
eralized displacements in Eq. 1.11. The chapter begins with a discussion of the
displacement and strain representations used in this approach. Following this is the deri-
vation of the wing skin contributions to the mass and stiffness of the system. Next dis-
cussed are the derivations of the spar cap and rib cap contributions to mass and stiffness.
This is followed by the derivations of the spar web and rib web contributions to mass and
stiffness. Also included is a discussion of the contribution of concentrated masses to the
mass of the system. Following this is the formulation of the load vector from concen-
trated force load and distributed pressure load conditions. Finally presented are the meth-
ods used to calculate displacement and stress output from the generalized displacement
solution. Appendix B contains a more detailed derivation of mass and stiffness contribu-

tions from wing structural components.

3.2 FSDPT Displacements and Strains

First Order Shear Deformation Plate Theory (FSDPT) differs from Classical Plate
Theory in that the Kirchoff-Love assumption is not employed. Rather, it is assumed that
plane sections normal to the plate’s mid-surface remain plane but not necessarily normal
to that surface after deformation. Hence, the shear strains ¥,, and ¥,, may not be ignored as
they are in CPT (RE84,LIV194). It is assumed that the out of plane displacements are
small, and there may be in-plane displacement of points at the plate’s mid-surface since
the wing is not assumed to be symmetric with respect to the x-y plane. As with CPT, the
transverse normal strain €, is negligible since the transverse deflection does not vary
through the thickness of the plate,'thus resulting in the transverse normal displacement w

being a function of x and y only.
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Using FSDPT the displacements in the x, y, and z directions respectively are approxi-

mated by
u(x,y,2) = uy(x,y) +2y, (%)
3.1)
v(x%y,2) = vy(xy) +2v, (%)
(3.2)
w(x,y,2) = wy(xy)
(3.3)

where u,, v,, w, are the x,y,z displacement components, respectively, of a point along the
reference mid-surface, and y, and , are rotations of a line element, originally perpendic-
ular to the mid-surface plane, about the y and x axes respectively (RE84,LIV194). The

associated strains are given by

0 0
exx:@_:._u()-kz—-\—vx .
x x ox (3.4)
d
e 2 _ o, oW
Yy y y oy (3.5
Y. = a_”+?l = 8_uo+av0+z(?_\_l_lx+a\|!y}
» " 9y ox 0dy ox dy  ox (3.6)
awo
T = Ve oy 3.7)
awo
Yyz = ¥ +$ (3.8)

(LIV194,RE84). These displacement and strain relationships form the basis for the mass
and stiffness matrix formulations.

To use the Ritz method described in Chapter 1, it is necessary to approximate each of
the five x,y,t dependent deformation fields by polynomial series given in vector form as
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T
uo(x,y,t) = {al(x:y)} {ql (1)}
(3.9)
T
LY, 1) = . ¥) ()
Vo (¥, 1) = {a, ()} {g,(D} (3.10)
T
\lfx(X,y,t) = {613()6,}7)} {Q3(t)}
(3.11)
T
v, (6,0 = {ag(xy)} {q, (0} G12)
T
Y, 8) = ) {g5(0)}
wy(x,y,1) = {as(xy)} {4gs 5.13)
where
T mql; nql;
{a,(xy)} ={...x "y ..}
(3.14)

and similar expressions are used for {a,}7, {a3}T, {a4}T, and {as}T (LIV194). The column
vectors {q,}, {¢}, {gs}, {g.}, and {gs} contain the polynomial coefficients which are the
generalized displacements in the Ritz formulation. These polynomials have Ng,, Ng,, Ngs,
Ng,, and Ngs terms respectively, and the x and y powers are predetermined.

When the vectors {q,}, {¢.}, {gs}, {gs}, and {gs} are combined into one column vec-

tor of the form

T T T T T T
{qt = {qla 5> 43> 94> ‘15}

(3.15)
the u,v,w components of deformation may be written as
u
v = {08, el +z[S, (xy)]1} {q()}
_ (3.16)
w

where S, and S, are matrices containing polynomial terms of the form P (9 ynSO(r’ )

mS1(r,i) nS1(r1i)
y

and x respectively. Partitioned into subvectors of dimension 1 x Ng,

(n=1,2,...,5), the matrices are given as

a 0000

[So(x31 =10 aj 00 0 (3.17)

T
0000 ay
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00a 00

[S,(xy)] = T

1 000 614 0 (318)

000 00

where both are 3 x Ng,,, in dimension with
Ngq,,, = Nq, +Ng,+Nq;+Ng + Ng

tot 1 2 3 4 5 (3.19)

based on the length of the subvectors. Note that different orders of approximation polyno-

mials are allowed for different displacement fields.

3.3 Skin Contribution to Mass and Stiffness for a FSDPT Zone

The contribution to the kinetic energy 7T of an infinitesimal skin element dx by dy of
the jlth skin layer of a single trapezoidal panel is

T

1
del = ijltjl (x,y) dxdy

(3.20)

S o<t =
S o= o=

where pj is the constant material density of the skin layer, and #,(x.y) is the thickness of the
skin layer (LIV194). Using Eq. 3.16 for the displacements and integrating over the whole
trapezoidal panel area (placed at a distance z from the reference plane) gives

T = o1 o) €0y TS, + o sks, )+ o 75, )+ (575, ) ] a3 axay
. (3.21)

Summing the kinetic energy contributions of the Nir,r skin layers in the panel and sum-
ming over the Np panels in the zone leads to the total skin mass matrix, Ng,,, X Ng,, in

dimension, given by

Np Nlror T T
(M1, = 2 2 le”tjl (%, y) [SoSo+hjz (%, Y)(SOS1)
ip=1jl=1 yx (3.22)

T 2 T
+hﬂ (xay)(slso)‘l'hﬂ (x,y) (SISI)]dXdy
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where hj(x,y), the layer depth distribution substituted for z, and #,(x,y) are polynomial
functions of x and y as given in Eqgs. 1.1 and 1.2 (LIV194). Thus, each element of [M],,
is a linear combination of area integrals of the form Iz(m.n) as defined in Eq. 2.11.

In assessing the strain energy-of the skin, each skin layer is treated as a plane stress
panel for which the only strains of concern are €, €,, and Y, Substituting Egs. 3.9-3.13
into Egs. 3.4-3.6 allows these strains to be written as

8)6)6

3 = {[Ryex ] +z[R (x, )]} {q ()}
Ty

(3.23)

where

a, 0 000

T
0 a5, 000

[Ry(x,¥) ]
(3.24)
T T

sy oy 000

(3.25)

0
(R, (xN] =100 0 a0
0

Partitioned into subvectors of dimension 1 x Ng, (n=1,2,...,5), these matrices are 3 X Ng,,,
in dimension. Now the contribution to the potential or strain energy U of an infinitesimal
skin element dx by dy of the jith skin layer of a single trapezoidal panel is

T
| exx 8)cx
Ty Yy

where the matrix [Q];, 3x 3 in dimension, is the jlth layer’s constitutive matrix referenced
to the x-y axes, and z;(x,y) is the thickness of the skin layer (LIV194). Using Eg. 3.23 for

the strains and integrating over the trapezoidal panel area gives
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Uy = Jta ) (0 (R 101k, + o R 10118, )
yx (3.27)
c RT101 R, )+ (K101 R, ) T g} dxdy

Summing the potential energy contributions of the Nly,y skin layers in the panel and sum-
ming over the Np panels in the zone leads to the total skin stiffness matrix, Ng,, X Nq,, in
dimension, given by ‘

Np Nlror

(K0, =3 Y [[u9[Ryl0] ,.lRo+hﬂ(x,y)(R(T, [0] ,-[Rl)
ip=1 jl=1 yx ' ' (3.28)

+hyy (x,) (RIT [Q]ﬂRO) +hy (x,) (Rf [Q]ﬂRl) dxdy

where the depth distribution #;(x,y) in Eq. 1.1 has been substituted for z, and ty(x.y) is
given in Eq. 1.2. Each element of [K,],, is a linear combination of area integrals of the

form Ipg(m,n).

3.4 Spar Cap Contribution to Mass and Stiffness for a FSDPT Zone

The contribution to the kinetic energy 7 of an element of length dn of the jsth spar is

T

) u u
ATy = 3p;A (M) g, | v y (dn (3.29)
w w

where M is the coordinate along the spar axis rotated from the y axis by an angle A, pj; is
the constant material density of the spar, and the cap area Asp}_s is expressed as a function
of n (LIV194). Referring to Figure A.3, all 1 dependence of this equation may be
changed to y dependence using Eq. 2.20. The spar cap area may be expressed as a linear
function of y, and the variable x may be expressed in terms of y using the spar line equa-
tion from Eq. 2.21. Using Egs. 2.20 and 3.16 and integrating over the length of the spar
gives

1 Pis = L TraT T
= -5 SyRA(y)spjs{q} [SOSO+Z(SOSI)

Js " 2cos Ady=sy,
(3.30)
+z(sfsoj +z2(SlTS1):| {4} dy
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Summing the kinetic energy contributions of the Nszor spars in a zone leads to the total
spar mass matrix, Ng,, x Ng,,, in dimension, given by

Nsror

Pjs =5Yr T T
2 COéA y:syLA (y) 5Ppjs |:S050+hjs (X, y) (SOSI)
o (331)

T 2 T,
+h, (X, Y) (SISO) + I (%, 7) (SlSl):]dy

[M)]

spYror

where the spar depth distribution A, (x,y) has been substituted for z using Eg. 1.1, and the
spar cap area is given in Eq. 1.3 (LIV194). When Eq. 2.21 is used for x, each element of
[M,,],, becomes a linear combination of spar line integrals of the form Ig(m,n) as defined
in Eq. 2.24.
The contribution to the potential or strain energy U of an element of length dn of the
Jsth spar is
1

2
PWie = 255 (W, (3.32)

where E, is the longitudinal modulus of elasticity, the cap area A » is a function of the

Jjs

spar line coordinate 1, and €__ is the normal strain along the spar axis (LIV194). The

m
spar cap area may be expressed as a linear function of y. Referring to Figure A.3 and
using standard tensor transformation rules, the normal strain in the 1 direction may be

written in terms of strains in the x and y directions by

T gxx
e.. = {TR} €
m yy (3.33)
Ty )
where
{TR}" = [sin2A, cos?A, sinAcosA} = {s2A, c2A, sAcA}
(3.34)

Let us define

[0,,) = {TR} {TR}"
(3.35)

Substituting Eq. 2.20 for dn, using Eqs. 3.23 and 3.33 for the strain, and integrating over
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the length of the spar gives

_ 1 Ei =y, T T ( T )
Js T 2cosA y=SyLA () SPjs{q} [RO (9,1 Ry +2 Ry 1,1 R (3.36)

+z(R1T[Qsp] RO) +z2(Rf[Qsp]R1)] {q}dy

Summing the potential energy contributions of the Ns;,r spars in the zone leads to the total
spar stiffness matrix, Ng,,, x Ng,,, in dimension, given by

Nszor

E. = ’
Kl = 3 =7 A0, [Ro1Q,, 1R + 1y, (x,y)(R§ [QSP]RJ
js=1 (3.37)

whyy (o) (RT1Q,,1R, )+ 12 e (R 10, 1R, ) Tdy

where the spar depth distribution A;(x,y) has been substituted for z using Eq. 1.1, and the
spar cap area is given in Eq. 1.3 (LIV194). When Eq. 2.21 is used for x, each element of

[K., ], becomes a linear combination of spar line integrals of the form Isp(m.n).
spitot p g

3.5 Rib Cap Contribution to Mass and Stiffness for a FSDPT Zone

The contribution to the kinetic energy T of an element of length dx of the jrth rib is

T

i

1 .

aT;, = sp;, A(X),, s (dx
o2y Y (3.38)

w

S o< =

where p;, is the constant material density of the rib, and the cap area A, is a linear func-
Jjr
_ tion of x. Using Eq. 3.16 for the displacements and integrating over the length of the rib

gives
1 pe=rx A TrT T. T of T _
7, = oA, i Tsisy v (st )+ 875, o (515, ) T vy s

(3.39)

where the limits of integration rxz and rx, are shown in Figure A.4. Summing the kinetic

energy contributions of the Nrpy ribs in the zone leads to the total rib mass matrix, Ng,,, X
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Ng,,, in dimension, given by
Nrror . ) r .
"X=TX
M1, = 3 oA, [S5,+h, (o0 (575,
jr=l (3.40)

T )2 T.
+hjr(x,y)(bS1SO)+hjr(x,y)(SlSl):|dx

where the rib depth distribution &, (x,y) has been substituted for z, and the rib cap area is
given by Eq. 1.4. With y equal to a constant yg; along the length of the spar, each element
of [M,,,,, becomes a linear combination of line integrals of the form /,(m,n) as defined in
Eq. 2.33. |
The contribution to the potential or strain energy U of an element of length dx of the
Jrth rib is
AU, = ‘B A , e’dx
Jr rb;, " xx

o2 (3.41)

where E, is the longitudinal modulus of elasticity, and the cap area A , is a linear func-
jr

tion of x. Focusing on a subset of the displacement fields (using Eqgs. B.4, B.9, and B.11)

the uniaxial strain along a rib cap is expressed by

€ = 1Yo +2[Y (x )]} {g()}

(3.42)
where
{3} = {ap.4s}
(3.43)
[Y ( » )] = T
0 Lt 101 (3.44)
(Y, (x,»)] = T
16y L{0} {a3,x}_ (3.45)

Both matrices, 1 x (Ng,+Ng,) in dimension, are partitioned into 2 subvectors having Ng,
and Ng, terms respectively. Using Eq. 3.42 for the strain and integrating over the length of

the rib gives
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U, = 2E,[TA A, {2} [YeY, +z(YT )+Z(YTY)+Z (YTY]]{q}dx

]" 2 Jrdx=rx,
(3.46)

Summing the potential energy contributions of the Nryy ribs in the zone leads to the total

rib mass matrix, (Ng,+Ngs) X (Ng,+Ng,) in dimension (and submatrix entries correspond-

ing to {g,} and {g;}), given by

Nrror :
rb tot Z ]r_[ —rxiA (x) rber:YgYO + hjr (x’ y) (YOTYI)
jr=l (3.47)

T, ) 2 T
+hjr(x,y)(YIYOA)+hjr(x,y)(Y1Y1):|dx

where the rib depth distribution k;,(x,y) has been substituted for z, and the rib cap area is
given by Eq. 1.4. With y equal to a constant yg,, along the length of the spar, each element

of [K,,],,, becomes a linear combination of line integrals of the form Zz5(m,n).

3.6 Spar Web Contribution to Mass and Stiffness for a FSDPT Zone

A spar web is positioned in the vertical plane between parallel spar caps on the upper
and lower wing surfaces. This plane is defined to be the M-z plane where 1 is the coordi-
nate along the corresponding parallel upper and lower spar axes rotated from the y axis by
an angle A. See Figure A.3 for spar line geometry. The contribution to the kinetic energy
T of an infinitesimal element dn by dz of the jith spar web layer is

T

dT,

u
1 -

jl = J[ ]l (M, 2) v dndz
W

o =

(3.48)

where pj is the constant material density of the web layer, and #;(1,z) is the thickness of
the layer (LIV194). The layer thickness may be expressed as a linear function of y only,
and the variable x may be expressed in terms of y using the spar line equation from Eg.
2.21. All 1 dependence may be changed to y dependence using Eq. 2.20. Substituting Eq.
2.20 for dn), using Eq.3.16 for the displacements, and integrating over the area of the web

gives
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1 P =V thy ()

j[ = ELOSA y=sy, hL(y) jl( ){q} |:S S +Z(S S)
(3.49)

+z(SlTSO) + zz(sfsl) 114} dzdy

where the limits of z integration are the depth distributions of the lower and upper spar
caps given by Egs. B.133 and B.134. Summing the kinetic energy contributions of the
NL,,,, spar web layers of each of the Nsw spar webs in the zone leads to the total spar web

mass matrix, Ng,,, X Ng,,, in dimension, given by

NXWlewb

Pit py=syz (v () ( T )
(M, CmAﬁ sth oy a0 ) [S58,+2l 5,5,
is= lji 1 (3.50)

+Z(SITSO) + 22( S'S 1) dzdy

where £,(y) is given in Eq. B.130. The z integration may be performed analytically using

Eq. B.137 thus leaving only a spar line integral to be evaluated. Therefore, when Eq. 2.21
is used for x, each element of [M,,,],,, becomes a linear combination of line integrals of the
form Ip(m,n) as defined in Eq.2.24.

In assessing the strain energy of a spar web, each layer is treated as a plane stress

panel where the only strains of importance are € and Ynz- From the assumptions

nm’ €

of FSDPT, ¢, may be neglected. In Eq. 3.33, the normal strain € has been defined in

terms of strains in the x-y plane. Using standard tensor transformation rules, the shear

strain T, May also be defined in terms of strains in the x-y plane by

= {sinA, cosA}{ sz} = {sA,cA} { sz}

Y, (3.51)

where A is the angle of rotation of the 1 axis from the y axis (LIV194). Combining Egs.
3.33 and 3.51 let us define

{ o } = [TRy] {2}

Yoo (3.52)

where

T
{8l = {8 &y Yoy Yup Vb (3.53)
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_ | (s2A) (c2A) (sAcA) O 0
[TRy] =
0 0 0 (sA) (cA) (3.54)
Using Egs. 3.4-3.15 to expand Eq. 3.53 gives
T
{e}" = {[Wy(e)] +z[W (x, )1} {q(D)}
(3.55)
where _ -
T
a, 0 00 0
T
_ 0 dysy 0 0 0
[(Wo (0] = {4, &
0 Aysy ysy 00 0 (3.56)
0 0 ag 0 ag,x
0 0 0 ayas,
00ay, 0 0
00 0 a0
[Wl (x,}’)] = T T
A 00 d3sy Ayoy 0 (3.57)
00 0 0 0
00 0 0 0

Partitioned into subvectors of dimension 1 x Ng, (n=1,2,...,5), both matrices are 5 x Ng,,
in dimension. Now the contribution to the potential or strain energy U of an infinitesimal

element dn by dz of the jlth spar web layer is

/ (3.58)

T
€ €
AU, = 21,(0,2) { m } [ 1{ m }dndz
27 J
Ynz ’YT[Z
where [O] ji 1s the jlth layer’s constitutive matrix referenced to the 1-z axes as discussed
in Section 1.5, and £,(n.z) is the thickness of the layer (LIV194). The layer thickness may
be expressed as a linear function of y only, and the variable x may be expressed in terms of

y using the spar line equation from Eq. 2.21. Let us now define
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T
[Q] = [TR,] [0} ,[TR,]
by 25 Jl 25 (3.59)
Substituting Eq. 2.20 for dn, combining Egs. 3.52, 3.55, and 3.59 for the strains, and inte-

grating over the area of the web gives

11 =syg (fy ()
Up = 2 cos Ady=sy, Jn, () £ () {a} [WT[Q]W +Z(W [Q]W) (3.60)

+z(w"f [Qs] Wo) + zz(wf[Qs] Wl)] {q} dzdy

where the limits of z integration are the depth distributions of the lower and upper spar
caps given in Eqs. B.133 and B.134. Summing the potential energy contributions of the
NI, spar web layers of each of the Nsw spar webs in the zone leads to the total spar web

stiffness matrix, Ng,,, x Ng,,, in dimension, given by

NTWlewb

Kl = 33 gl o V100w, o W10 W)
is=1 jl=1 (361)

+z( W 10,] WO) ¥ zz( Wi [0,] WJ ] dzay

where #,(y) is given in Eq. B.130. The z integration may be performed analytically using
Eq. B.137 thus leaving only a spar line integral to be evaluated. Therefore, each element

of [K.,,].,, becomes a linear combination of line integrals of the form Isp(m,n).

3.7 Rib Web Contribution to Mass and Stiffness for a FSDPT Zone

A rib web is positioned in the vertical plane between parallel rib caps on the upper
and lower wing surfaces. This plane is the x-z plane located at y=yg;. The contribution to

the kinetic energy T of an infinitesimal element dx by dz of the jlth rib web layer is

T

S o= o=

U
v (dxdz
W

where p; is the constant material density of the web layer, and #;(x,z) is the thickness of the

layer. The layer thickness may be expressed as a linear function of x only. Using Eq. 3.16
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for the displacements and integrating over the area of the web gives

1= Lo T ot Tstsy o[ 1)
(3.63)

+Z(S{SO) + ZZ(SITSI) ] {4} dzdx

where the limits of z integration are the depth distributions of the upper and lower rib caps
given respectively by Eqs. B.133 and B.134. Summing the kinetic energy contributions of
the of NI, rib web layers of each of the Nrw rib webs in the zone leads to the total rib web

mass matrix, Ng,,, x Ngq,,, in dimension, given by

NrWNlrwb

=rx, rthy (y)
ir=1 jl=1 (3.64)

+Z(S{SO) + ZZ(SITS1 ) :| dzdx

where #;(x) is given in Eq. B.199. The z integration may be performed analytically using
Eq. B.137 thus leaving only a rib line integral to be evaluated. Therefore, with y equal to
a constant y,; along the rib line, each element of [M,,,],,, becomes a linear combination of
line integrals of the form Izz(m,n) as defined in Eq.2.33.

In assessing the strain energy of a rib web, each layer is treated as a plane stress panel
where the only strains of importance are €,,, €, and Y,,. From the assumptions of FSDPT,
e, , may be neglected. Using Egs. 3.4, 3.7, 3.9, 3.11, and 3.13 let us define

{ f;} = [1F, o] +2[F, (0]} {a (1)

Xz (3.65)
where
X T T T
{q} {QIaq:;aqs} X
(3.66)
T
a,,. 0 0
[Fo(x,y)] = 17
0 agag (3.67)
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T
[F, ()] = |9 9% 0
0 0 0 (3.68)

Partitioned into subvectors of dimension 1 x Ng, (n=1,3,5), both matrices F, and F; are
2 x (Ng,+Ngs+Ngs) in dimension. Now the contribution to the potential or strain energy U

of an infinitesimal element dx by dz of the jlth rib web layer is

T

€ €
dU, = %l‘] (%, 2) { . } [Q]ﬂ{ o }dxdz '

Yz Yz (3.69)
where [O] jl is the jlth layer’s constitutive matrix referenced to the x-z axes as discussed
in Section 1.5, and tﬂ(x,z) is the thickness of the layer. The layer thickness may be
expressed as a linear function of x only. Using Eq. 3.65 for the strains and integrating over

the area of the web gives

=rxy (hy (y) (0 {g} [F [01,,F, +z(F [Q]]ZF)

jl:2xrx,,-h(y)]
(3.70)

+z(F1T [Q]ﬂFO) + ZZ(FIT[Q] ﬂFl)] {3} dzdx

where the limits of z integration are the depth distributions of the upper and lower rib caps
given in Egs. B.133 and B.134. Summing the potential energy contributions of the of
NI
ness matrix, (Ng,+Ng;+Ngs) x (Ng,;+Ng,+Ngs) in dimension, given by

rw

, rib web layers of each of the Nrw rib webs in the zone leads to the total rib web stiff-

NrWNlrwb

Kol = 3 3 2[00 1,00 [P 10148, + o Fy 121,07, )
ir=1 jl=1 (371)

T 2( T
+Z(F1 [Q]le0)+Z (Fl [Q]]IFI)]dde
where #,(x) is given in Eq. B.199. The z integration may be performed analytically using

Eq. B.137 thus leaving only a rib line integral to be evaluated. Therefore, each element of

[K,.,)... becomes a linear combination of line integrals of the form Izz(m,n).
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3.8 Concentrated Mass Contribution for a FSDPT Zone

~ Concentrated masses having a magnitude of M . may be designated at free moving
points (x;,y;.) on the wing structure. Each point is also associated with some depth distri-

bution. The contribution to the kinetic energy T of the jcth point mass is

T
{ u u
Tie = gMie] v v (3.72)
w w

Using Eq. 3.16 for the displacements and summing over the Nc masses of a zone leads to

the total point mass matrix, Ng,,, x Ng,,, in dimension, given by

(M, = %“ Mjc[(sgso) + z(sgsl) + z(sfso) + zz(sfsl)]

je=1 (3.73)

where S, and S, are evaluated at (x,.y;.). The z coordinate of a point is determined from its

depth distribution.

3.9 Load Contributions for a FSDPT Zone

As discussed in Section 2.7, the generalized load vector { P} may contain contribu-
tions from distributed pressure loads and concentrated force loads. A distributed load
over a trapezoidal panel area was defined in Eq. 2.39. For a FSDPT zone the pressure may
have components in the x and y directions as well as the z direction. If the component dis-
tributions in the x, y, and z directions are ¢,, (py, () z respectively, then the 3 directional con-
tributions to the potential energy Q of a load distributed over an area dx by dy of a panel

and working through the wing deflections are given by

dQ, = ¢, () u(xy z0)dxdy = ¢,(x,y) lug(x,y, 1) +2y, (x, y, 1) | dxdy

(3.74)
dQ, = o, (6 y)v(x,y,z ) dxdy = 0, (x,y) [vo(x, 3. 1) +2y, (x,y, ) Jdxdy

(3.75)
dQ, = ¢, (xy)w(xy, 2 )dxdy = ¢,(x,y) [w,(x,y, 1) ] dxdy

(3.76)

Using 3.9-3.13 for the deformation fields, we get an expression for the virtual work in the




form

50 = J[((0,1a,} {80} +0,21as} {803} +0, [y} (3gy) +
xy
0, ay) {89} +0,{as} {Bas} Jdxdy
Let the polynomial loads now be defined as
No,

z ¢xjxm¢]yn¢]
j=1

0, (xy)

No, .

Z d xm¢1yn¢1
Yj

j=1

0, (x, )

N¢Z . . .

Z @Z xm¢]yn¢]
¢l

j=1

0, (x,y)

The generalized load vector is now partitioned as

T T . T, T T T
{P} . {PlaP2>P3:P47P5}

where
No,

mo; ng;
(P} = Y@, f[x "y "{a, (xy) }dxdy
1 yx

No, :
mo; no; .
[P} = 3@ [[x 7y " {a,(xy) }dxdy
j=1 0 yx

No,
m¢j ”q)j
(P} =23, @ [[x 7y " {ay (xy) }dxdy
=1 yx
i o; nd
mb. no.
{P,} = zzcl)yj”x 'y “{a,(x,y) } dxdy
=1 yx

No,
mq)j nq)j
{Psy = 3@, [[x 7y {as(x,7) } dxdy
j:] yx
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(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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The depth distribution of the loaded panel is substituted for z in terms where it appears,
depending on where the in-plane forces are applied. Each term of the vector may be
expressed as a linear combination of area integrals of the form Ipz(m,n), as defined in Eq.
2.11. For a concentrated force load with components P o IA’y, f)z acting at point (x;.,y,.), the

load vector contribution is simply

{P.} = Pyz{as}
(3.87)

where all polynomial terms are evaluated at (x,.y,), and z is evaluated from the points
depth distribution. For a single zone, the total load vector {P},,, is obtained by adding the

load contributions from all distributed and concentrated loads acting on the zone.

3.10 Displacement and Stress Output

The ESDPT zone generalized displacements resulting from the solution of Eq. 1.12
may be used to calculate the static displacement and stress at a selected point in the zone.
Choosing a point (X,,,,Y..,) from an output grid and determining z,,, from the point’s depth
distribution, the displacements u, v, and w at that point may be determined by using Eq.
3.16 where S, and S, are evaluated at the point. Using Eqgs. 1.5 and 3.23, stresses at a point
(X,usYour) ON the jlth skin layer may be determined from

XX

o, [ = [Q1;{ [Ry(x: )] +2,, R, (7)1} {q} (3.88)

ny gl

where R, and R, are evaluated at the point, and z,,, is evaluated from the layer’s depth dis-
tribution at the point. Using Eqgs. 3.23 and 3.33, the uniaxial stress at a point (X,,;Yo.) On
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the jsth spar may be determined from

T
o, = E, {TRY {[R,(x,9)1 +2,,[R; ()]} {q}

(3.89)
where R, and R, are evaluated at the point, and z,,, is evaluated from the spar’s depth dis-
tribution at the point. Using Eq. 3.42, the uniaxial stress at a point (.Y, on the jrth rib
may be determined from '

0, = E, {[Y,(x, )] +2,,[¥ (xy)1} {g} (3.90)
where Y, and Y, are evaluated at the point, and z,,, is evaluated from the rib’s depth distri-
bution at the point.

The generalized displacements for a particular natural frequency resulting form the
solution of Eq. 1.14 may be used to calculate the mode shape displacement at a selected
point in the zone. As with static displacements, the modal displacements at a point
(X, You) May be determined by using Eq. 3.16 where S, and S, are evaluated at the point,
and z,,, is evaluated from the point’s depth distribution.




Chapter 4:
Zone Connections and
Boundary Conditions

4.1 Overview

This chapter presents the global synthesis of a multi-zone wing model. The chapter
begins by discussing how the stiffness, mass, and load contributions from multiple CPT
and FSDFPT zones are merged into the global math model. Next presented is the deriva-
tion of stiffness matrix contributions from the spring connection of two CPT zones. Fol-
lowing this is the derivation of stiffness matrix contributions from the spring connection
of two FSDPT zones. These are extended with the derivation of the stiffness matrix con-
tributions from the spring connection of a CPT zone and a FSDPT zone. Finally discussed

is the imposition of wing root boundary conditions.

4.2 Zone Connections in Global Context

When multiple zones are used to characterize a wing, compatibility of displacements
at the zone interfaces must be enforced. This may be done using a penalty method via
computational springs. A spring stiffness coefficient represents local stiffness at an attach
point common to two zones. A large stiffness coefficient represents very rigid connection
while a smaller coefficient may represent more flexible connection, such as that provided
by an actuator. Linear springs may be used to enforce compatibility of linear displace-
ments, and rotational springs may be used to enforce compatibility of slopes or angular
displacements.

In a multiple zone configuration, the stiffness matrix, mass matrix, and load vector
contributions of each zone must be merged into their global counterparts, [Keonl, (M),
and {P},.,. These correspond to the vector of global generalized displacements formed
from the generalized displacements of each zone. As an example, a wing with 2 FSDPT
zones (zones #1 and #2) and 2 CPT zones (zones #3 and #4) will have a vector of global

generalized displacements given by
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T
y,

T
Dy,

{}T _{TTTTTTTTTT
DT glop = 419229394 95|91, 92, 93, 94, 95, @.1)
(Refer to Chapters 2 and 3 for the notation of generalized displacements for CPT and
FSDPT zones). The additional second subscript here denotes the zone number out of a

possible Nz zones. The vector in Eq. 4.1 is of length Ng,,,, where

Nagiop = Ndyor, + NGy, + Ng,, +Na,,

slot 4.2)
Thus, the global stiffness and mass matrices will be Ng,,, X Ng,,,, in dimension, and the
global load vector will be of length Ng,,,. The global stiffness matrix may be partitioned

into submatrices as follows:

Kllll L2, TL3, K1141 K1151| Klllz K1|22 K1132 K1|42 K1|52’ K1‘w3| K11W4
K2111 2,2 K2131 K2141 K2151| K2112 K2122 K2132 K2142 Kz‘jzl K21W3| K21W4
K311| 3,2 K3131 K3141 K3151| K3112 K3122 K3132 K3142 K3152! K31W3[ K31W4
K411‘ 4,2, 4.3 K4141 K4151’ K4112 1(4‘22 K4|32 K4]42 K4‘52| K41W3l I(41w4
Ks1, Ks2, K3, Ksia, Kss | Ksu, Ksp, Kss, Ksia, Ksis | Ks| Ks o,
[Kglob] _ Klzll 1,2, K1231 L4y Klz‘sll Klzlz K1222 K1232 K1242 K1252 Lyw, K12w4
Ky, Koo Ko, Ko, K2251| Ky, Kop, Ko, Ko, Kzzszl K22w3| L (4.3)
K3211 3,24 K3231 34 K3251l K?’zlz K3222 K3z32 K3242 K3252| K32W3I K32W4 -
K4211 42 K4231 K4z41 K4251| K4212 K4222 K4232 K4z4z K4252| K4zw3| K4zw4
Kszll 524 K5231 K5241 K5251| K5212 K5222 K5232 K5242 Kszsz K52W3| Syws
Kw:!ll ws2, KW331 KW341 KWBSI‘ Kwslz KW322 KW332 KW342 wiSy| Twawy| Twaw,
_KW411 W42y KW431 KW441 KW451 KW412 Kwdzz KW432 KW442 weSy| Twawy| Twaw,

where each submatrix K rs, is of dimension Ng y, X Ng ;, (r,s=w,1,2,3,4,5 and ij=1,2,...,Nz).
The global mass matrix will be partitioned like [K,,,,], and the global load vector will be
partitioned like {g}g. Contributions to stiffness and mass from each zone’s structural
components are placed in the corresponding submatrices on the diagonal where, for a sub-
matrix K sy’ i =j = zone #. There are no mass contributions in submatrices where i #j.
However, spring connections do provide connectivity between zones and therefore pro-

duce contributions to stiffness in submatrices where i #j.
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4.3 Spring Connection of 2 CPT Zones

Let us begin by defining an “attach line” which corresponds to the common surface of
2 CPT zones to be connected. Springs act at selected “attach points” along this line to pro-
vide local stiffness. The left and right endpoints of the attach line are given by the coordi-
nates (arx,,aty,) and (atxg,atyg). Referring to the attach line in Figure 4.1, let us define the

unit vector # in the direction of the attach line given by

t = cosoui+ sinQy

4.4
where
atx, —atx
coso = Rz L -
J(ath—ath) + (aty,—aty,) 4.5)
: atyp—at
sino, = Yr— L
(4.6)

2 2
J(ath —atx;)” + (atyp—aty;)

A vector of rotation having positive rotational vector components in the x and y directions

may be given by

Q= (Q)i+ (Qy)}'
(4.7)

(atxp,aty;)

(ath’atyR)
-

X t

Figure 4.1: CPT Attach Line Geometry
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Using the right hand rule for a CPT zone, €, corresponds to the displacement slope w,,
while Q, corresponds to -w,.. Positive rotation about # may then be given as

0 =0e} = w,ycosoc—w,xsina
(4.8)

(LIV190). Recall from Section 1.3 that each zone may have its geometry defined in an
independent axis system. Therefore, the attach line common to both zones may be defined

with a unique orientation o, in zone 1 and a, in zone 2. This results in

COS(X1 - Wl,xSIH(X1

0 w.,
by (4.9)

D
I

W.,, COSOL, — W,, Sino
2 2 2 20x 2
Y (4.10)

where, from Eq. 2.6, we have

T
{a,} {a,}

w
: @.11)

T
{a,} {g,}

w
2 (4.12)

Now let a linear spring with stiffness k,, connect point (x;,y,) on zone 1 with point (x,,y,)
on zone 2 by providing vertical displacement compatibility. The contribution to the poten-

tial energy U of the spring resisting vertical displacement is

1 2
U, = -k A
b2 4.13)
where

GG (4.14)

Substituting Egs. 4.14, 4.11, and 4.12 into Eq. 4.13 gives

1 T T T T
Ukw = ikwli{qwl} {awl} {awl} {qwl} B {qwl} {awl} {awz} {qwz}
| (4.15)

T T T T
g} {a,)fa,} {a,)+1a,) {a,}{a,} {qwz}}
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This leads to the stiffness submatrix contributions given by
T
(K, ], =kda,}{a,}
T
(K d, = ~kula,} fa,} e
' T
K, 1 =-k,{a,}{a,}
T
(X, .1, =*k1a,}{a,}

where {awl} and {awz} are evaluated at (x,,y,) and (x,,y,) respectively. These submatri-

ces are merged into the global stiffness matrix having the form

wiw, W W,

[K lob]
wow, K, (4.17)
for each linear spring connection that is used.

Also let a rotational spring with stiffness k, connect point (x;,y;) on zone 1 with point
(x,.y,) on zone 2 by providing slope compatibility. The contribution to the potential energy
U of the spring resisting angular displacement is

1
U, = zk,(0,-60,)
ke = 27017 V2 4.18)

Substituting Egs. 4.9-4.12 into Eq. 4.18 gives

1 Tr T . T
Ukg = ike[{qwl} (coszoc1 {aw]’y} {awl,y} — cos 0, Sinay {awl’y} {a, .}

1°

T
A . r 1h2
—cososinoy, {a,, ,} {a, ,} +sin*o, {a, .} {a, .} ){qwl}

T T
~{q, } (cosoc cosocz{a } {awby} —cosoclsmocz{aw“y} {awz’x}

T T
—COS 0L, SN0 {awl’x} {awz,y} + s1noclsmoc2{awl,x} {awz,x} ){qwz}
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T . T _ 7 (4.19)
—{qwz} (cosoclcosocz{awz,y} {awl,y} ~ COSOL, 81N 0L, {awz,y} {awl,x}

T T
—coso sinat, {a,, ,}{a, '} +sinosinc, {a, .} {a, .} ){qwl}

T T T
+{q, } (coszoc2 {awz,y} {awz’y} —cosa,sino, {a, } {awrx}
. r 5 T
—COSOL, Sin 0L, {awzgx} {awz’y} + sin“ oL, {awz,x} {awz,x} ){qwz} i|

This leads to the stiffness submatrix contributions given by

T T

- 2 _ g
lwl]ke = ke[cos o, {awl’y} {awlyy} cos oL, Sino, {awl,y} {awl’x}

LK,

T T
—Ccos 0L, sinct, {awl’x} {awl’y} + sina, {awl,x} {aw,,x} ]

T T
[lewz] N = —kg [(cosalcosaz{awl’y} {awz,y} —cosoclsmocz{aw“y} {aw2,x}

T ’ T
—cosousina, {4, .} {awz,y} + sinoy sina, {a,, |} {awz,x}. ]
(4.20)

T T

= —kg I:cosoclcosaz{awz,y} {a, ,} —cosa,sine, {a, .} {a

[KWZWI] k WY an}

6

T T
—cos oL sind, {awz,x} {awl’y} + sinal, sino, {awz’x} {awl,x} }
2 g i !

K,,,] . ke[cos a,{a, }{a, } —cosaysina,fa, } {‘awz,x}

T T
—cosoczsmocz{awz,x} {awz,y} + s1n2a2{aw2’x} {awz,x} }
where {aw“y} and {awl’x} are evaluated at (x;,y,), and {awz,y} and {aw2,x} are eval-

vated at (x,,y,) (LIV190). These submatrices are merged into the global stiffness matrix

having the form shown in Eq. 4.17 for each rotational spring connection that is used.
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4.4 Spring Connection of 2 FSDPT Zones

Point compatibility of relative vertical displacements between 2 FSDPT zones may be
enforced with a linear spring in the same fashion as it is done for CPT zones. Let a linear
spring with stiffness ks connect point (x,y;) on FSDPT zone 1 with point (x,,y,) on FSDPT
zone 2. Using Egs. 3.3 and 3.13 let us define

T
wy = fas} {a5)

4.21)

T
{as } g5}

=
N
1l

(4.22)

These relationships for w; and w, may be used in Eq. 4.13 to express the contribution to

the potential energy of the spring as

1 T T T T
Uks = Eks[{qﬁ} {asl} {6151} {q51} B {qsl} {asl} {asz} {qsz}

(4.23)
T T T T
{gs} fas)fas) a5} +{as) {as}ias} fas) ]
This leads to stiffness submatrix contributions given by
T
[K5151] ks = k5{a5|} {asl}
T

T
[K5251]k5 = _kS{a52} {a51}

T
[K5252] ks = k5 {a52} {052}

where {asl} and {asz} are evaluated at (x;,y,) and (x,,y,) respectively. These submatri-

ces are merged into the global stiffness matrix having the form




51

b—‘NI

K K K K K K K K K
L2 T3 LA BLS | Tl L2, T3, T4y LS,

K2,5‘| Ky, Ko, Ky, Kya K.

2 172 i72 172 172

>

[
>

1

171 2

2

171

>
>

)

K,, K K K., K,, K., K, , K
111 3121 3131 3141 3151 3112 3122 3132 3142 3152

K,. K,, K,. K, , K K, K,, K,. K, , K
4111 4121 4131 4141 4151I 4112 4122 4132 4142 4'152

[Kgl()b] - K5111 K—Sl—z_l K5|31 If—ﬂi K5151[ K5112 stzz K513z K5142 K5152
L1 K1221 K1231 K1241 K1251 Klzlz K1222 K1232 K1242 K1252 (425)

K2211 K2221 K2231 K2241 K2251l K2212 K2222 K2232 K2242 K2252

K3211 K3221 K3z31 K3241 K3251l K3zlz K3222 K323z K324z K3252

K4211 K4221 K4z31 K4241 K4251’ K4zlz K4222 K4232 K424z K4252

Ks 5

272

_KSZII K5221 K523l K5241 K5251| K5212 K5222 K5232 K5242

for each vertical spring connection that is used.

Linear in-plane displacement compatibility between 2 FSDPT zones must also be
enforced. Referring to Egs. 3.1-3.2, the in-plane displacements u and v both consist of a
linear translation (u,v,) and a rotation (y,,\,). There are 2 ways to enforce point compat-
ibility of these translational and rotational components. A coupled pair of linear springs,
both at a distance # from the mid-surface, may be used to enforce compatibility of both
components. Alternately, a linear spring may be used at the mid-surface to enforce trans-
lational compatibility, and a separate rotational spring may be used to enforce rotational or
slope compatibility. Both methods become equivalent when the stiffness coefficient of the
rotational spring is chosen to be the stiffness coefficient of the linear springs divided by h2.
Since the latter method has no complicating depth distribution dependence, it is the one
used and presented in this work.

Referring to Figure 4.2, let us define the unit vector 7, perpendicular to the attach line,

given by

(4.26)

where Egs. 4.5 and 4.6 define sino and coso. Let us also define a vector of mid-surface

in-plane displacement with components in the positive x and y directions given by

X = “0? + VO} 427

Linear displacement perpendicular to the attach line at the mid-surface is then given by




52
y
(atx;,aty;)
o
(atxg.atyg)
r )
X t
Figure 4.2: FSDPT Attach Line Geometry
C=7%e®F = uy,sin0 —v,coso
(4.28)

Given that the attach line may be oriented differently in each zone’s axis system, Egs. 3.9
and 3.10 may be used to express linear displacements for zone 1 and zone 2 respectively

by

T T
sin(xl{all} {qll}—cosocl{azl} {q21}

S
(4.29)

T T
sino, {a; } {q,} —cosa,{a, } {g,}

C
2 (4.30)

Now let a linear spring with stiffness &, act perpendicular to the attach line and con-
nect point (x;,y;) on zone 1 with point (x,,y,) on zone 2. The contribution to the potential

energy U of the spring resisting in-plane displacement is

1
Uy = 5k (§;-8,)?2
f= 2k Gk 431)

Substituting Egs. 4.29 and 4.30 into Eq. 4.31 gives
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T T T T
[sin%cl{qll} fa,}4a,} gy} —cosoysiney {g,} fa;} {a,} {4y}
T T » T T
—cososina {g, b {ay + {a;} {g,} +cos?o{g,} {ay}{ay} {ayt

T T T T
—smoclsmocz{qll} {all} {alz} {q12}+cosoc251noc1{qll} {all} {a22} {q22}

T T T T
+cosoclsinoa2{q2]} {a21} {alz} {qlz} —cosoclcosocz{qzl} {021} {azz} {c]22}
(4.32)

T T T T
—sinoclsin(xz{qlz} {alz} {all} {qll} +cosoclsinoc2{q12} {alz} {a21} {q21}
’ T T T T
+Cos 0L, SinaL {qzz} {a22} {all} {qll}—cosalcosaz{qzz} {a22} {azl} {qzl}
‘ T T ' T T
sio, {q, ) {a )} {ay} {a,} - cososino, {a,} {ay} {ay} {4y}

T T T T
~cosasing, {0y} {4} {ay} {a) +eoson a,) {ay) fay) {qzz}]

This leads to stiffness submatrix contributions given by -

[sinzal {a,} {all}q I:—cosoclsinocl {a,} {a21}7j|

K]‘lll Kllzl — k
K,, K "1
2,1, 72,2 —coso, sina, {a, } {a11}1j| |:coszoc1 {ay} {a2[}7j|
K —sino sino, {a; } {a, }1] [cosoczsinoc1 {a; } {a, }7}
1 2 1 2
1112 1[22 — k L
K, K :

211, 722, [cosoclsinocz{az} {a, }7j| [—cosalcosaz{%} {a, }7}
L 1 2 1 2

(4.33)

7
[—sin(xlsinocz{al2} {a11}1j| [cosalsinaz{alz} {azl}TJ

L1, 71,2,

K . ]
20 22 |icosoczsmoc1 {a, } {q }7} l:—cosoclcosoc2 {a, } {a, }rJ
2 1 2 1
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X [sinzotz{alz} {alz}q l:—cosoczsinocz{alz} {a22}7j|

K
L1, 71,2, = k

—_

K, . K
2,1, 72,2, I:—cos,oczsinoc2 {a22} {alz} 7] |:cos2(x2 {azz} {a22} 1j|

where {all} and {azl} are evaluated at (x;,y,), and {alz} and {azz} are evaluated at
(x,y,). These submatrices are merged into the global stiffness matrix having the form
shown in Eq. 4.25 for each translational spring connection that is used. Note that if a lin-
ear spring of stiffness k, is used to resist translation parallel to the attach line, Eq. 4.33
may be used to find the stiffness contributions with sino replaced by coso., coso replaced
by -sino, and k, replaced by k,. '

Enforcement of rotational or slope compatibility is done in a manner similar to that
for translational compatibility. Recall that a vector of rotations was defined in Eq. 4.7.
Using the right hand rule for a FSDPT zone, Q, corresponds to -y, and €2, correspond to
y,. Using Eqgs. 4.4 and 4.7, positive rotation about the attach line may be given as

6 = Qe =y, sino—y, coso
(4.34)

Given that the attach line may be oriented differently in each zone’s axis system, Egs. 3.11
and 3.12 may be used to write rotational displacements for zone 1 and zone 2 respectively

given by

r T
Sinal{%l} {q31}—cosal{a4l} {6141} 435)

D
I

T T
sino, {a, } {g.}—-cosa,{a,} {q,}
2 2143, 3, 2174, 42 (4.36)

Now let a rotational spring with stiffness &, act in resistance to rotation about the attach
line and connect point (x;,y,) on zone 1 with point (x,,y,) on zone 2. The contribution to

the potential energy U of the spring is

1
U, = 2k, (0,-6))2
ky 273 1 2 (4.37)

Substituting Egs. 4.35 and 4.36 into Eq. 4.37 gives
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T T . T T
[sinZocl{q?,,} fay} {a;} {ay) - cosaysinay {g5 b {a;} {a,} {ay}
T T T T
—cosoysinoy {q, b {ay} {a;} {g;) +cosPo{q,} {a,} {a,} {g,}
T T . T T
—sinalsinaz{q3l} {a3]} {a32} {q32} + COSOL, Sin0, {q3]} {a3l} {a42} {q42}
T T T

T
+cosoclsinoc2{q4]} {a4l} {a32} {q32}—cosoclcosot2{q4l} {a4[} {a42} {q42}
(4.38)

T T ) ) T T

—sinoclsinocz{q32} {a32} {a31} {q31} + cosoc151n(x2{q32} {a32} {a41} {q4]}

‘ T T T T
+C0s 0., 8in 0, {q42} {a42} {a3l} {q31}—cosalcosa2{q42} {a42} {a41} {q4l}

_ T T . T T

Slnzaz {‘132} {a32} {agz} {CI32} - COSGZSIHOCZ {Q32} {agz} {042} {Q42}

) T T ) T T
—cososing, (g, ) fa, ) {ay ) fg; ) +coo, (g} {a,} e} {a,) ]
This leads to stiffness submatrix contributions given by

|:sinzocl {a31} {a31}1} [—cosoclsinoc1 {a31} {a41}1]

K313l K3141 — k

K K
4,3, 744 [—Cosalsin(xl {a41} {6131}11 [COSZ(X1 {a41} {a41}7}

[—sinoclsinocz{a,jl} {a32}7j| |:cosoczsin0c1 {a3[} {a42}7}

33,

K ) )
413, T4y |:c0soclsmoc2 {a4]} {a, }7j| li—cosoclcosocz{a4 1 {a42}1]
2 1
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(4.39)
—sino sino, {a; } {ag } coso sino, {a; } {a, b
K K 2 1 2 1
3231 3241 — k
K,. K ’
43 T4 |:cosoczsin0cl {a,} {a32}7j| [—cosoclcosocz{a42} {a41}]}
sin2o., {a. } {a }1j| [—cosoc sino, {a, } {a }7]
Kz Kial . [ 2143 1 143, 2SIN0, 1 d3 5 14y,
= K3
K K
4,3, T4,4, [—cosazsinocz{a42} {a32}1] |:cos2a2{a42} {a42})]

where {a31} and {a41} are evaluated at (x,,y,), and {a32} and {a42} are evaluated at
(x,,y,). These submatrices are merged into the global stiffness matrix having the form
shown in Eq. 4.25 for each rotational spring connection that is used. Note that if a rota-
tional spring of stiffness k, is used to resist rotation about an axis perpendicular to the
attach line, Eq. 4.39 may be used to find the stiffness contributions with sino replaced by
-cosa, coso. replaced by sina, and k; replaced by k,.

4.5 Spring Connection of a FSDPT Zone and a CPT Zone

Let us define zone 1 to be a FSDPT zone and zone 2 to be a CPT zone. Point compat-
ibility of relative vertical displacements between the two zones may be enforced as fol-
lows. Let a linear spring of stiffness ks connect point (x;,y;) on zone 1 with point (x,,y,) on
zone 2 by resisting linear vertical displacement. The displacement w, for the FSDPT zone
is defined in Eq. 4.21, and the displacement w, for the CPT zone is defined in Eq. 4.12.
These relationships may be used along with Eq. 4.13 to express the contribution to the

potential energy U of the spring as

1 T T T T
U, = ikj[{qsl} fag) as} {as) = dag} las} Loy} day) o

T T T T
a,} {a,}{as) (as)+1a,} {a,}{a,} {qwz}]
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This leads to stiffness submatrix contributions given by
T
[K5151]k = k5 {a5i} {a51}
5
T
Ky, = s tas b ta,} (4.41)°

T

[K _kj{awz} {a51}

W251] ks

T
(K], = ksta,) {a,)

where {asl} and {a Wz} are evaluated at (x;,y,) and (x,,y,) respectively. These submatri-

ces are merged into the global stiffness matrix having the form

Ki, Ko, Kis, Kig Koigs | Ky,
Ko, Ko, Kos Kou Ko | Ko,
a1, Kap, Kas Kag Kas | Ko, (4.42)
K51, Kspo, Ksa, Ks g Ksis | Ks o,
_szll KW221 KW231 wy4y KW251 W2

for each vertical spring connection that is used

Since a CPT zone with a symmetric cross section (as used here) does not have any in-
plane displacement at its mid-surface, there is no necessity to enforce in-plane transla-
tional compatibility with the FSDPT zone. This leaves only rotational or slope compati-
bility to be enforced. The rotation 8, about the attach line for the FSDPT zone is defined
in Eq. 4.35, and the rotation 8, about the attach line for the CPT zone is defined by Eq.
4.10. Let a rotational spring with stiffness k, act in resistance to rotation about the attach
line and connect point (x;,y,) on zone 1 with point (x,,y,) on zone 2. Substitution of Egs.
4.35 and 4.10 into Eq. 4.37 results in the potential energy contribution of the spring given
in Eq. 4.38 where {q32} and {q 42} are replaced with {qwz} , {a32} is replaced with
—{a W, .} .and {a 42}‘ is replaced with — {awz,y} . The resulting stiffness submatrix con-

tributions are given by
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K |:sin20c1 {a31} {a3l}1} |:—cosoclsinoc1 {a3l} {a41}1]
3]31 3l41 — k3 ’
K K
4,3; 4,4, [—cosalsinal {ay } {a31}7} I:(:()Szoc1 {a, } {a4l}T]
_ ) ;
|:sinoc1sinoc2{a3 }a, .} —COs 0L, SinQ, {a3l} {awz,y}
31W2 _ k3 i 2
T
4wy |:—cosalsinoc2{a4l} {awz’x} F cosoclcosaz{a4l} {awzﬁy}q
(4.43)

T
[sinalsmocz{awz’x} {a31} —COS 0L, SInQL; {awry} {a3]}

T
[—cosoc1 sinot, {awz’x} {a41} + COS 0L, COS L,y {awz,y} {a41} 7]

T T
— . 2 . B
[KW2W;| = k3[51n ocz{awzyx} {awzsx} —cosoczsmocz{aw?x} {awz’y}

T ‘ T
—cosoczsmocz{awzyy} {awz,x} +_cosza2{aw2’y} {awz’y} }
where {a31} and {a4l} are evaluated at (x,,y,), and {awz’x} and {awz’y} are evalu-
ated at (x,,y,). These submatrices are merged into the global stiffness matrix having the
form shown in Eq. 4.42 for each rotational spring connection that is used. Note that if a
rotational spring of stiffness k, is used to resist rotation about an axis perpendicular to the

attach line, Eq. 4.43 may be used to find the stiffness contributions with sino. replaced by -
cosa, coso, replaced by sina, and k, replaced by k.
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4.6 Boundary Conditions

Boundary conditions along the wing root may be imposed exactly through specific
selection of displacement polynomials, or approximately through the use of computational
springs. For a CPT zone, exact zero displacement along the root line y=0 may be achieved
by using displacement polynomials that exclude all terms containing y°. A cantilevered
condition along the same line may be achieved exactly by using polynomials that exclude
all terms containing y° and y'. For a FSDPT zone, a cantilevered condition may be
achieved by using displacement polynomials that exclude all terms containing y°.

In using springs, a zone is constrained at points along the root line which becomes
the attach line. At a particular attach point on a FSDPT zone, five different springs may be
used to constrain vertical, in-plane translational, and rotational displacements. Assuming
the FSDPT zone to be zone #1, the stiffness contribution of a linear spring with stiffness ks
resisting vertical displacement is given by the first submatrix expression in Eq. 4.24. The
stiffness contribution of a linear spring with stiffness k, resisting in-plane translation per-
pendicular to the attach line is given by the first submatrix expression in Eq. 4.33. Like-
wise, the contribution of a rotational spring with stiffness k; resisting angular
displacement about the attach line is given by the first submatrix expression is Eq. 4.39.
As mentioned in Section 4.4, springs with stiffness coefficients k, and k, may also be used
respectively to constrain in-plane translations parallel to the attach line and angular dis-
placements about an axis perpendicular to the attach linein a similar manner. All of these
stiffness contributions are merged into the global stiffness matrix. Note that a very large
spring stiffness coefficient will force displacement to approximately zero. However, ill-
conditioning of the stiffness matrix results from using coetficients that are too large.




Chapter 5:
Spar Web Stiffness Approximation

5.1 Overview

This chapter discusses the use of an equivalent sandwich core to approximate the
stiffness contributions of an array of spar webs. Discussed first is the case where spar
webs provide only transverse shear stiffness to the wing. Presented next is the derivation
of the stiffness contribution of a sandwich core structure. Finally discussed are the corre-
lation factors allowing the stiffness matrix contribution of an array of webs to be approxi-

mated by a sandwich core over an associated panel area.

5.2 Spar Web Shear Stiffness

Recall from Chapter 3 that for a FSDPT zone the potential energy contribution due to

an infinitesimal element of the jlth spar web layer is given by

T
dU, = 1t (n,z){ e*m} [Q]jz{ “m }dndz
Tnz

1 il
o2 Yoz 5.1)
The composition of the web layer constitutive matrix [O] ji is given by (Eq. B.166)
@1, = |2u Zis
16 Des (5.2)

Now it is reasonable to allow the non-shear terms of [Q] jlto be approximately zero since
spar webs may contribute very little to in-plane stiffness. Using this assumption, the web
is turned into a shear web, and the only nonzero constitutive term is Jgg. Thus, the poten-
tial energy expression in Eq. 5.1 may be reduced to

1 2
AUy = 5t; (0, 2) Qg6Yy ANz (5:3)
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Using Eq. 2.20 for dn, using Eq. 3.51 for Tnz> and letting the layer thickness be a linear

function of y gives

T
—_ l YXZ sz
del = mtjl () Q%{ . } [TR22] { y }dydz
yz yz

5.4
where
[TR,,] = (s2A) (sAcA)
(sAcA) (c2A) (5.5)
Using Egs. 3.7,3.9, and 3.11-3.13 let us define
Y .
{ Z} = [W] {q'}
Yy, (5.6)
where
T T
(W] = ay 0 as,,
* T T 5.7
0 a as,, (5.7)
T T T T
{at = {g3.94 951
32 44> 45 (5.8)

The matrix [W,], 2 x (Ng;+Nq,+Ngs) in dimension, is partitioned into subvectors of dimen-
sion 1 x Ng, (n=3,4,5). Substituting Eq. 5.6 into Eq. 5.4 gives

dU.

1 ' T '
T Teos ALl () Q66{q}T[WS] [TR,,] (W] {q'} dydz

(5.9)

Integrating over the area of the web, first with respect to z and then with respect to y, gives

U

1= 5o Oss [ [i) 5 0) {4’ TW,) (TRy,] [W,] {4} dzdy

syL hL(y) ]l (5.10)

where the limits of z integration are the depth distributions of the lower and upper spar
caps (see Egs. B.133 and B.144). The z integration may be performed analytically (Eq.
B.137) leading to stiffness matrix contribution of the jlth spar web layer in terms of a spar
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line integral given by

K] = Do Thyy (53) =y (63) 11, ) IW,) [TRyp) W, 1
(5.11)

where x along the spar line is a function of y according to Eq. 2.21. This leads to linear
combinations of spar line integrals defined in Eq. 2.24. If a wing contains many spars, the
evaluation of web contributions to the stiffness matrix can be quite time consuming when

done web by web using Eq. 5.11 .

5.3 Sandwich Core Shear Stiffness

Let us examine the case where a sandwich core is used to model the internal structure
of the wing between the composite skins as shown in Figure 5.1. The motivation here is to
replace an array of many spars and ribs by a single equivalent core, whose stiffness can be
evaluated once. Typical honeycomb core structures theoretically provide only transverse
shear stiffness in bending. The elastic moduli and in-plane shear stiffness of the core are
assumed to be zero (AL69). Only the shear moduli G,, and G,, are non-zero. The core

constitutive relationship may be expressed by

B Composite Skin

Figure 5.1: Composite Sandwich Structure
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{ oll } = GXZ 0 { ‘YXZ }
o, 0 G,|ly, (5.12)
When the core is rotated by an angle B from the x-y reference axes as shown in Figure 5.1,

this relationship may be restated by

{cxz} = Q44Q45 { sz}
o Qus ss| L 7y (5.13)

y2
where

Qu = G"sin2B+Gyzcoszl3

(5.14)
Qus = (ze—Gyz) sinBcosf 5.15)
Q. = G _cos?p+G  sin?B
. S5 z yz (5.16)

(JH92). If the core is assumed to be isotropic such that G, =G, = G, then Eq. 5.13

becomes
{ cxz } - [G 0]{ YXZ }
Oy, 0GlLy, (5.17)

The constitutive relationship for a core with shear stiffness along the direction of spar
lines, M, at an angle A from the y axis may be given by

o, = Gy,
"o (5.18)
The contribution to the potential energy U of such a rotated core is given by
1 2
U.=-{}Gy,,dV
= glflon. (5.19)

(AL69,JH92). Using Eqs. 3.51and 5.5 this may be rewritten as
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.
Gerpl Yo Tx dz |
ol e

Zyx ‘sz

The z integration may be replaced by the core depth c(x,y) shown in Figure 5.1. Substitut-
ing this and Eq. 5.6 into Eq. 5.20 gives '

T
U, = g”f (x,3) {q'} [W,]" [TRy] [W,] {¢'} dxdy
I (5.21)

Finally, the resulting stiffness matrix contribution in terms of an area integral is given by

(K1, = Gffeuy) (W) [TRy) [W,)dxdy

Vx (5.22) -

5.4 Spar Web Array - Sandwich Core Stiffness Correlation

Now let us consider an array of spar webs where all Nwb webs are equally spaced and
oriented at the same angle A to the y axis. Referring to Egs. 5.11 and 5.22, it seems rea-
sonable to assume there must be a way to correlate the stiffness matrix contributions of
such an array with the stiffness matrix contributions of a sandwich core structure in an
approximate manner. Doing so would effectively reduce the computationally intensive
stiffness calculations of several spar webs composed of multiple layers to relatively sim-
ple calculations over a small number of single-layered panels.

Using Eq. 5.11, an averaged spar web stiffness matrix can be determined for an array
of spar webs corresponding to a particular trapezoidal panel area. The web “density fac-
tor” d may be determined from the number of webs per chord dimension of the panel.

Referring to Figure 1.3, this is given by

_ Nwb
XaL~XFL (5.23)

We assume that all spar webs have NI, layers each with the same thickness. Therefore, an
average web thickness t,,(y) can be determined by summing over the layer thicknesses of
one web. We allow for each composite layer to have a different shear stiffness due to prin-
cipal material axis orientation. An average shear stiffness for the whole web can be deter-

mined at any y coordinate along one web using
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| NI,
wa = ty (¥) [Q(,s] il
fwp (7) E’, ! ! (5.24)
Using these averaged values, the averaged spar web stiffness matrix is given by
-4 ~ h h w1 (TR,) (W,]d
[K]wb - E’(’)S_AQWI, y:sthwb(y) [ U(X,)’) - L(I,)’)] [ _,] [ 22] s y

(5.25)

Thus, Eq. 5.22 becomes approximately equivalent to Eq. 5.25 when G = Q,,, and

d

c(xny) =ty () [hy (6y) —hy (x,3)] (5.26)

Therefore, the stiffness matrix contribution of an approximately equivalent core over the

panel area associated with the web array is given by

(K], = -4

¢ mebjjtwb () [hy (6y) ~hy (1)1 (W, [TR) [W,] dxdy
yx

(5.27)

A whole array of evenly distributed spar webs having the same web construction can
now be replaced by a single layer of equivalent core material. Evaluation of the core stiff-
ness contribution is done using the same integral tables used to evaluate contributions of
cover skins, thus leading to substantial saving of computational resources. A similar sim-
plification may be made for an array of rib webs.




Chapter 6:
Test Case Results

6.1 Overview

This chapter presents numerical results obtained with the new equivalent plate model-
ing capabilities focusing on two different test cases. The first test case involves a swept,
thick, high aspect ratio wing of the type used for subsonic transports. This case was used
to study the effects of using Ritz polynomials of different orders for different displacement
fields and to study the accuracy of replacing detailed spar web modeling by an equivalent
core are studied. A Boeing HSCT candidate wing represents a configuration made of a
low aspect ratio inner section and a high aspect ratio outer wing, densely packed with sup-
porting internal spars. Effectiveness and accuracy of equivalent core modeling are tested

with this wing.
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Figure 6.1: Turner-Martin-Weikel Wing
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6.2 Swept, Thick, High Aspect Ratio Wing

A all aluminum subsonic transport type wing, for which experimental and numerical
results are available, is discussed in TMW64 and LIV194 . Shown in Figure 6.1 is the
geometry of this wing which has a symmetric airfoil (see Appendix D for more detail).
This wing is used here first to test the effect of varying the order of polynomials used for
different displacement and rotation fields in the FSDPT model. Recall from Chapter 3 that
there are 3 independent linear mid-plane displacements u,, v,, wo and 2 independent rota-
tional displacements Vs,, , in the model. Obviously, the vertical deflection, stress, and
natural frequency predictions of the model will deteriorate if polynomials of low order are
used. However, the question is whether it is possible to use lower order polynomials for
the shear rotation fields or any other deformation field without severely degrading the
overall accuracy. If this is so, the overall order of wing models may be reduced leading to
computational savings in storage and CPU time.

The numerical tests involved first varying the powers of the polynomials used for v,
and y, alone. Then the powers of the polynomials used for u, and v, alone were varied.
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Figure 6.2: Vertical Displacement along Rear Spar with Varying
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The reference case was based on using complete 6th order polynomials for all 5 displace-
ment fields. Root cantilever boundary conditions along y=0 were enforced by omitting
terms containing y° from the displacement polynomials, thus leaving 21 terms for each
displacement for a total of 105 degrees of freedom. A 11b. vertical load was applied at the
outboard point on the trailing edge.

Available experimental test data and finite element results are used here for compari-
son. Figure 6.2 shows the vertical deflections along the rear spar with rotation y, and v,
polynomials varying in order from second to sixth order. Shown in Figure 6.3 is the nor-
mal stress in the primary spar direction (on) along the root chord from front to rear.
Note that the finite element stress results do not correlate well in the region of higher stress
gradient due to choice of mesh size. Natural frequency results are given in Table 6.1. The
results show that although deflection and natural frequency correlation is still good for
polynomials of 4th order (10 terms) stress correlation deteriorates quickly in the area of
high stress gradients at the inboard trailing edge. Still, with 4th order rotation field poly-

nomials, overall stress accuracy is comparable to the finite element results.
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Orders of y, and v, Rotation Field Polynomials




Table 6.1: Natural Frequencies (in Hz) with Varying Orders of
v, and y, Rotation Field Polynomials
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Frequency # FEM 6th 5th 4th 3rd- 2nd |
(Shape) Order Order Order Order Order
#1 (lst Bending) 115.6 114.7 115.1 115.8 118.1 125.7
#2 (Fore/ aft) 317.6 312.4 312.4 312.4 312.4 312.4
#3 (1st Torsion) 418.4 428.9 430.3 431.9 441.6 484.8
#4 (2nd Bending) | 576.4 575.3 576.9 582.8 591.9 715.0
#5 (2nd Torsion) 1086 1125 1136 1157 1251 1251

When the order of polynomials used for u, and v, was changed, no change from the
reference case was observed in vertical deflections or stresses using polynomials down to
Ist order (1 term). The 2nd natural frequency, corresponding to fore/aft motion, was the
only value that changed at all throughout the comparison. This data is shown in Table 6.2.
Such results could be expected because of the symmetry of airfoil cross section. If inaccu-
rate prediction of the fore/aft vibration frequency can be tolerated (which is indeed the
case when classical flutter is involved), then only 53 degrees of freedom (21 for wy, 15 for
v, and ,, and 1 for u, and v,) are needed for the wing. This is approximately a 50%
reduction in model size (compared with the 5 x 21 = 105 dof model) leading to just a small

reduction in accuracy.

Table 6.2: Second Natural Frequency (in Hz) for Varying
Orders of u, and v, Displacement Polynomials

6th 5th 4th 3rd 2nd 1st
Order Order Order Order Order Order
3124 316.3 329.7 364.1 428.9 428.9
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Figure 6.4: Vertical Displacement along Rear Spar
Using an Equivalent Shear Core

The Turner-Martin-Weikel wing is also used here as a test case to assess the accuracy
of an equivalent core representation for shear web stiffness. Stiffness of the array of 5
spar webs parallel to the leading edge is approximated by a single shear core using Eq.
5.27. The same loading condition and displacement polynomials from the reference case
above are used here. Vertical deflections along the rear spar are shown in Figure 6.4. Cor-
relation with the reference case is reasonable with an error of 4.4% at the outboard point.
Stress results along the root chord are shown in Figure 6.5. Correlation is reasonable here
as well with an error of 6.1% at the inboard point on the trailing edge. Natural frequency
results are reported in Table 6.3. The most serious discrepancies with respect to the refer-
ence case occur in the 3rd frequency (9.4% error) and the 5th frequency (6.4% error), both
of which correspond to torsion modes. However, notice that these results have an error of
only 7.1% and 3.0% respectively when compared to the finite element standard. Results
from the test indicate that the equivalent core approximation works well for this thick,
high aspect ratio wing.
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Table 6.3: Natural Frequencies (in Hz) Using
an Equivalent Shear Core
Frequency # FEM FSDPT FSDPT
(Shape) Reference | Equiv. Core
#1 (Ist Bending) 115.6 114.7 114.4
#2 (Fore/ aft) 317.6 3124 312.4
#3 (1st Torsion) 418.4 4289 388.7
#4 (2nd Bending) 576.4 575.3 568.9
#5 (2nd Torsion) 1086 1125 1053
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6.3 HSCT Wing

A simplified model of a representative HSCT wing was used to assess the accuracy of
CPT based modeling of wings (LSB93). The simplified wing is symmetric about the mid-
plane and has a Hnearly varying depth from root to tip. Its planform layout is shown in
Figure 6.6 (see Appendix D). Previous HSCT numerical tests included finite element
results obtained using the airframe structural optimization code ELFINI (LSB93,LP87).
With 42 spar webs, this wing provides a challenging test case for the equivalent core
approximation. If the preparation of stiffness contributions due to 42 webs, done one by
one as in LSB93, can be replaced by the evaluation of stiffness contribution of one core,
then CPU time savings can be significant.

Figure 6.7 shows vertical displacements for the HSCT wing along lines of constant y.
The results show that use of the equivalent core gives good correlation with displacements
based on individual spar webs. Using the equivalent core leads to a discrepancy of only
2.9% at the outer wing tip. Stress results are given in Figure 6.8 for the skin layer ori-
ented at 0° to the inboard wing spar direction. Use of the equivalent core gives good cor-

relation here as well.

800 T T T T T T

700

MEEENA AREE!

600 |-

6]
o
o
I
|

n B
o o
o o
| |
1

|10 I I A L 2

v (in) - span direction
@
o
S
T
I

Y
o
o
1
|

L

-100 | 4

_200:|||||||||||||||||||||||||||||||||||||||
1200 1400 1600 1800 2000 2200 2400 2600 2800

x (in) - chord direction

Figure 6.6: HSCT Wing Planform




Vertical Displacement (in.)

L BRI

w/ Spar Webs

............ w/ Equivalent Core

y=207

y=405 .=~

73

y=726 .

Lo bl

1500

2000

Body Station (in.)

2500

Figure 6.7: HSCT Wing Vertical Displacements

Table 6.4: HSCT Natural Frequencies (in Hz)

Frequency # | ELFINI Ri?e;[r)ef;ze qufl?\[/?]é’:"l(“)re
#1 9.50 9.50 9.37
#2 23.9 24.2 24.0
#3 26.9 24.8 4.7
#4 33.7 32.3 322
#5 36.1 38.8 38.8
#6 42.7 43.8 43.0
#7 45.2 50.0 48.8
#8 49.6 55.5 55.5
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Figure 6.8: Normal Stress in Layer Oriented at 0°
to Inboard Wing Spar Direction

Table 6.4 shows a comparison of natural frequencies for ELFINI, FSDPT with normal
spar webs, and FSDPT with the equivalent shear core. The frequencies are dependent
upon the stiffness of the springs used to constrain displacements at the wing root. Using
the spring stiffness coefficients listed in Appendix D, the FSDPT capability using spar
webs matches the ELFINI capability reasonably. The equivalent core results correlate

Table 6.5: Stiffness Matrix Assembly Time (CPU seconds)

gi(s)[]ilt;g;nrs;sss 42 Spar Webs Equivalent Core
10 2893.5 14.1
15 1861.5 10.8
21 765.7 33
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well with both of these. Both tests with the Turner-Martin-Weikel wing and HSCT wing
demonstrate the accuracy of modeling when an array of spar webs is replaced by an equiv-
alent core.

The effectiveness of using an equivalent core is shown in a comparison of the com-
puter resources required to assemble the stiffness matrix contributions for an array of spar
webs and an equivalent core. Computations were performed on an HP Apollo 700 work-
station. Tables 6.5 compares the CPU time used in assembling the stiffness matrix for 42
spar webs vs. the time used in assembling the stiffness matrix for an equivalent core. As

hoped for, the computational savings are significant.




Chapter 7:
Conclusion

7.1 Summary

This work has presented recent improvements in equivalent plate modeling of aircraft
wings for use in multi-disciplinary design optimization. A mathematical wing model was
outlined using energy principles and the Ritz solution method. Formulations of mass,
stiffness, and load contributions were given using both Classical Plate Theory and First
Order Shear Deformation Plate Theory. These formulations allow each displacement field
in the model to be independently approximated by a polynomial Ritz series of a chosen
order. Additionally, a formulation for determining the spring stiffness contributions from
the connection of a CPT zone to a FSDPT zone was derived. A method for approximating
the stiffness of an array of spar webs using an equivalent core was also developed.

Results are presented from numerical tests performed on two different wings. Tests
of the Turner-Martin-Weikel wing showed that low order polynomials may be used for
linear in-plane displacements at the mid-surface, resulting in retained accuracy from a
model of significantly reduced order. This wing was also used to show that an equivalent
core can be used in place of an array of spar webs with acceptable accuracy. Tests of a

lsimpliﬁed HSCT wing validated the accuracy and demonstrated the computational effi-
ciency of the equivalent core approximation applied to a wing with many spar webs.

The findings here serve to advance the capabilities of equivalent plate wing modeling.
These new developments allow wings of increasing complexity to be modeled with a bet-
ter combination of accuracy and efficiency than could be achieved previously. Ultimately, -
this builds support for the use of equivalent plate modeling as the primary wing structural
analysis tool in preliminary design optimization.
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7.2 Future Work

Future extension of this work should include thorough numerical testing of the formu-
lation for spring connection of FSDPT and CPT zones. This new capability should be
tested on several wing configurations with available data for comparison. Also, for this
capability to be used in design optimization, analytic sensitivities with respect to the
design variables must be obtained and implemented for any new parameters introduced
into the model. The developed code must also be modified to allow it to be linked with

optimizing routines.
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, Appendix A:
Analytical Foundations of an Equivalent
Plate Model Using CPT

A.1 Overview

In this appendix are derived the equations necessary to construct mass and stiffness
matrices for wing structural components based on Classical Plate Theory. This appendix
starts with a discussion of the assumptions of Classical Plate Theory and the ensuing
strain-displacement relationships. Following this foundation are the derivations of the
mass and stiffness matrix equations for a single skin layer. Next are the derivations of the
mass and stiffness matrix equations for a single spar. Presented last are the derivations of
the mass and stiffness matrix equations for a single rib.

A.2 Assumptions

Classical Plate Theory (CPT) is the name given to the small-deflection theory of
bending of elastic thin plates (RE84). The first assumption of CPT for a plate in the x-y
reference plane is that the displacements of the mid-surface are small compared to the
thickness of the plate, thus meaning the slope of the deflected surface is very small. The
second assumption is that the plate mid-surface remains unstrained after bending. The
third assumption, known as the Kirchoff-Love assumption, is that planes normal to the
plate’s mid-surface will remain plane and normal to the plate’s mid-surface after the plate
is deformed (RE84,JO75). This assumption is equivalent to ignoring the shear strains Y,
and v,,. The fourth assumption is that the transverse normal strain €, is negligible since
the transverse loads are transferred primarily to bending strains. In other words, the trans-
verse deflection does not vary across the plate thickness. The final assumption is that the
transverse normal stress G, may be neglected since it is small compared to the other
stresses. '

Certain assumptions must be made about the wing being modeled as well. The first of
these assumptions is that no spar webs or rib webs will be included. Only skins, spar caps,
and rib caps, will be accounted for. See Figure 1.1. The second assumption is that the
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wing is thin and symmetric with respect to the x-y plane. The final assumption is that the
wing skins are thin with respect to the wing depth allowing all skin layers in each of the

upper and lower skins to have the same depth distribution (LIV90).

A.3 Strain-Displacement Relationships

The established assumptions allow the plate problem to be considered under plane
stress conditions where the in-plane strains &, €, and Y,y are the only strains of concern.
It may also be concluded that the normal displacement in the z direction is a function of

only x and y; therefore

w=wi(x,y)

(A.1)

Because of the Kirchoff-Love assumption and the symmetry of the wing, the inplane dis-

placements # and v are given as

dx g (A2)
v = —za—w = —Iw
dy v (A.3)
The strains are then given as
XX ax XX (A.4)
£ = i‘i = —ZIW,. .
w9y Yy (A.5)
_Ou  ov _
Ty =gy tax T e (A.6)

It is evident that all the displacements and strains are functions of the independent trans-
verse displacement w(x,y). These relationships form the basis for the stiffness and mass
matrix formulations (LIV90).
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A.4 Displacement Function

To use the Ritz method described in Chapter 1, it is necessary to define the displace-
ment function w(x,y,f) as a polynomial series having Ng, terms using Eq. 1.9. Thus,

Ng,,

mq; ng;
wy. ) = 3,q,®; x

i=1 (A7)

where the time dependent coefficients g,,(t); become the generalized displacements solved
for in the Ritz formulation, and the powers mg; and ng; are predetermined (LIV90). This

may be expressed more simply in vector form as

T
wxy,t) = {a,(x,y)} {q,®}
(A.8)

where

T .
{fa,(x,y)} = {...x "y ..}
(A9)

and {g,(¢)} is a column vector. Both vectors contain Ng, terms. This vector form for
w(x,y,£) will be used in the mass and stiffness matrix formulations.

A.5 Mass Matrix Contributions of a Skin Layer

Neglecting rotary inertia the contribution to the kinetic energy T of an infinitesimal
skin element dx by dy of the jlth skin layer is

1 .2
dT’]l = ipjltjl(x:y)w (x’y’ t) dxdy (A 10)

where p; is the constant material density of the skin layer, and #,(x.y) is the thickness of the

skin layer given in Eq. 1.2 as

Nt,
A mt, nt

g ey) = 3 Ty -x 'y "

feol (A.11)

(LIV90). Substituting Eq. A.8 into Eq. A.10 gives
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1 — r .
Ty = 5Pty (6 ) 14,} {a,} {a,} {4,}dxdy A1)
Integrating this over the whole trapezoidal panel area yields
' 1 LT r
Ty = 5ppfftu ey 14,} {a,} {a,} {4,}dxdy AL
yx :
Equivalently, A
1 2 T T
Ty = 50 pf [t () {a,} {a,} {a,} {g,}dxdy Al
yx :

where o is the natural vibrational frequency of the skin layer. The variational extremum
condition from Eq. 1.10 applied here becomes

i _ g |

9q,, - (A.15)

yielding the mass matrix for the jlth skin layer given as

T
(M), = puf [ty (e y) {a,} {a,} dxdy
yx

(A.16)
Substitution of Eq. A.11 for #,(x,y) gives
M mt, nt T
7 k k
[Msk] Jl = pjlg lek;':xx y {aw} {aw} d'xdy (A17)

The mass matrix term in the ith row and jth column for the jlith skin layer may be

expressed as

N,
M, (i)Y, = p, Y Ty [[x"y" dxdy
sk jl ﬂkg; Jk}_‘:{ (A.IS)
where

m = mqi+mqj+ mt,
(A.19)
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n = nq.+nq.+nt
PR (A.20)
Let us define a family of integrals over the area of the trapezoidal panel where
I.,(mn) = xmyndxdy
TR
‘y[;[ (A.21)
Then the final expression for the i,jth term of [M,], is
Nt
(M (i), = p;y Y, TiyIrg (m,n)

Appendix C discusses how the family of integrals Irx(m,n) is analytically derived. The
mass matrix for all the skin layers combined [M,],, is obtained by summing the contribu-
tions of all the layers given by Eq. A.22. Because the wing is assumed to be symmetric
with respect to the x-y plane, the total skin contribution can be found by summing the con-
tributions from the layers of the upper skin and then multiplying by 2. This matrix is then
appropriately merged into the global mass matrix [M,,,,].

A.6 Stiffness Matrix Contributions of a Skin Layer

The contribution to the potential or strain energy U of an infinitesimal skin element dx
by dy of the jith skin layer is

dU, = %{K}T[D]ﬂ{l(} dxdy

(A.23)
where
W’xx
{x} == w,
2 (A.24)
2w

7xy
using Egs. A.4, A.5, and A.6, and [D];,is the plate bending stiffness matrix defined by

(D]. = [[0].2%d
it 'E it (A.25)
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(JO75, LIV90). The jith layer’s constitutive matrix [Q];, as discussed in Section 1.5, has

the form

0y 915 Q6
[Q1; = |0y, Oy O
016 Po6 Des il

(A.26)

where its components are determined for the x-y axis system from [Q] ji» the jlth layer’s
constitutive matrix referenced to its own principal material axes. Assuming the jith layer
to be an orthotropic lamina, its invariant properties may be used to find [Q]; when the prin-
cipal material axes are oriented at some angle B to the x-y axes as shown in Figure A.1
(JO75). The components of [Q], may be written as

Q,=C+ C,cos2P + C3cos4[3

(A.27)

le = C,—C,cos4f (A28)

Q,, = C,—C,cos2f + C5cos4P (A.29)
O = —éCzsin2B—C3sin4B (A30)
Q) = — %CzsinZB + C,sin4p o
O = Cs—Cycos4B (A32)

unidirectional composite
lamina

N y
N
AN

Figure A.1: Positive Rotation of Principal Material Axes from x-y Axes
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for which the invariants are given as

_ 3011 +30 + 201, + 40

C

! 8 (A33)
C2 _ QII_QZZ
2 (A.34)
C. - é11+@22_2é12—4é66
3 8 (A.35)
C - o +é22+6Q12_4Q66
4 8 (A.36)
C. < 01, + 02—~ 2015 + 40
(=

8 (A.37)

Referring to Figure A.2, the jlth skin layer lies between the coordinates z=h/2-1,/2 and
z=h/2+1,/2 such that the z integral from Eq. A.25 is given by

2 2
(h+1)12 2 h [ l(tj):l
J Zdz = —t,|1+=| =
(h—t) 12 4t 3\ h (A.38)

Since it is assumed that the wing thickness is much smaller than the wing depth (¢,/h <<1),
the right hand side of Eq. A.38 can be simplified to hztj,/4 (LIV90). Substituting Eqs. A.24
and A.25, and the simplified Eq. A.38 into Eq. A.23 then gives

) T
2 W’xx w’xx
_ 1(h(x, y) )
del =3 4‘ ‘ Ifﬂ (x,y) W’yy [Q]ﬂ w’yy dxdy (A39)
2w,xy 2w,xy

Substituting Eq. A.8 results in




Figure A.2: Skin Layer Thickness and Depth

2 T
at = YD) (x9) 1a,) WITLO) (W (g, ) dudy

it 2 4 il
where i 7]
{aw’xx} mg;—2 ng;
w.omgq; (mg;—1)x Yy ...
T
— — mq;, ng;—2
(Wl =1 {a,,} | =1..ng(ng;-x 'y
T mq,—1 ng;—1
2{a,,,} | e 2mgngx Ty

Integration of Eq. A.40 over the whole trapezoidal panel area gives

jt

2 T
U, = L) ey (a1 NTIOL (W (g, ) dudy
yx

. The variational extremum condition from Eq. 1.10 applied here becomes
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(A.40)

(A41)

(A.42)

(A.43)
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yielding the stiffness matrix for the jith skin layer given as
h(x,y)’ T
Kyl , = jj(——;ﬁ——)tﬂ (x.y) [W]" [Q) 1 [W]dxdy
I (A.44)
Substitution of Eq. A.11 for #,(x,y) and the following
Nh mh h
hi(x,y) = zHik'x ik P
k=1 (A.45)
for h(x,y) (See Eq. 1.1) into Eq. A.43 yields
Nh Nh N1
[KSk]jl T4 Z 2 thk Jk Tj,
ik=1jk=1k=1 (A.46)
mhy, + mhy +mt, nhy +nhy +nb, T
IE y [W] [Q1t[W]dxdy
yx
Let the r,ith term of the matrix [W] (3 x Ng,, in dimension) be
[W(r, l)] _ V~V(r, i) me(r, i) an(r, i)
(A.47)
Then the i,jth term of the triple matrix product [W]T[Q]ﬂ[W] is
3 3 - B - -
termfij) = 3 S W (r i) W(s,) @y (rys) a0 Dm0 ”W‘s’(’; ©

r=1s=1

Upon substitution of Eq. A.48 into Eq. A.46, the stiffness matrix term in the ith row and
jth column for the jlth skin layer may be expressed as

Nh Nh Nty 3

Ky Gl = 3% 3 ZZEsz

ik=1jk=1k=1r=1s=1 (A‘49)

W (r, i) W (s, ) @y (r, 9) [ [y dxdy
yXx

where
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m = mW(r,i) + mW(s,j) +mhik+mhjk+mtk
(A.50)
n=nW(ri +nW(s,j) +nh, +nh, +nt
‘ ik jk k (A51)

Noting that Eq. A.49 contains an integral from the family Ix(m.n) defined in Eq. A.21, the
final expression for the i jth term of [K]; is

Nh Nh Nt; 33

[Ksk(l J)] 42 z Zzthk Jk ll

ik=1jk=1k=1r=1s=1 (A.52)

W (i) W(s,j) Q,,(r, ) Iy, (m, )

The stiffness matrix for all the skin layers combined [K],,, is obtained by summing the
contributions of all the layers given by Eq. A.52. Because the wing is assumed to be sym-
metric with respect to the x-y plane, the total skin contribution can be found by summing
the contributions from the layers of the upper skin and then multiplying by 2. This matrix

is then appropriately merged into the global mass matrix [K,,,].

A.7 Mass Matrix Contributions of a Spar

Neglecting rotary inertia the contribution to the kinetic energy T of an element of
length dn of the jsth spar is

1 2
dT. = —pA(T]) W an
;2N (A.53)
where T is the coordinate along the spar axis rotated from the y axis by an angle A, p;, 1s
the constant material density of the spar, and the cap area A 5P, is expressed as a function
of 1 (LIV90). Referring to Figure A.3, all 1 dependence of this equation may be changed
to y dependence using

Y =Sy
SYR™SYL (A.54)

~i3

from which
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(sx,5y1)

A L
(SxR) Sy R)

n

Figure A.3: Spar Geometry

L dy
dn = dy- =
n 4 Syp—Sy,  COsA (A.55)

The spar cap area may be expressed as a linear function of y by

Asts (y) = AspOjs + ASPljsy (A 56)

as shown in Eq. 1.3. The variable x may also be expressed as a function of y in the form

x(y) = Sly+82

(A.57)
where
SXp— SX
§] = R "L
SYR—SVL (A.58)
o - SX;SYRp—SXpSY]
SYR—SYL (A.59)
Combining Eq. A.57 with Eq. A.7 allows the displacement w(x,y,t) to be written as
Ng;
mq; ng;
w(xy.) = Y q,(),; (Sly+52) "y
(A.60)

i=1

from which Eq. A.9 becomes
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' r mgq; ng;
{aw(x,y,t)} ={..., (Sly+82) "y ,...}

(A.61)
Using Egs. A.8, A.55, and A.61, the expression from Eq. A.53 now becomes .
1 L\, . Ceord
dT, = ipjs(%—zs—h) Oy, a} (@} e} g
in terms of y. Integrating over the length of the spar gives
_ l L =SYr . r r .
o= 325y oA O, () 0} () gy
Equivalently,
3 -1- 2 L =5Yg T T
7= 590 5o oA Oy, Lot (0} (0} Hapdy

“where  is the natural vibrational frequency of the spar. Application here of the varia-
tional extremum condition from Eq. 1.10 yields the mass matrix for the jsth spar given as

M), = o 55 Noma 00, 4, {a,) Ty

SYR=SYL/ ™ (A.65)
Substituting Eq. A.56 gives

M1, = 0 5 St (g, A1, ) (0, {a }dy
sp- js IS\ Syp— 8y )9Y=)L spO; " sl Y Y (A.66)

The mass matrix term in the ith row and jth column for the jsth spar may be expressed as

.. L =5y m n
My, )1, = B[ Ao, (5 ), (ST +52"5"dy

SYp— S =5y,
SYRT LT (A67)
L =5Yp m n+l1
+ASP1js(s——yR-—syL)ﬁ’:SYL (S1y+52)™y dy]
where
" (A68)

n = nq;+ng;
- (A.69)
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Let us define a family of integrals where

L SYr
I.,(m,n) = ———— Sty +82)"y"d
sp (m: ) syR—syLF =on, O1Y )"y (A.70)

Then the final expression for the i,jth term of [M,,]; is

[Msp(l’J)]]s = pjs [ASPOJ'SISP (m: "l) +AspljsISP(m’n+ 1)] (A71)

(LIV90). Appendix C discusses how the family of integrals Ig(m.n) is analytically
derived. The mass matrix for all the spars combined [M,,],,is obtained by summing the
contributions of all the spars given by Eq. A.71. Because the wing is assumed to be sym-
metric with respect to the x-y plane, the total spar contribution can be found by summing

the contributions from the spars on the upper wing surface and then multiplying by 2.
This matrix is then appropriately merged into the global mass matrix [M,,,].

A.8 Stiffness Matrix Contributions of a Spar

The contribution to the potential or strain energy U of an element of length dn of the
Jsth spar is '

_ 1 h(m)~ 2
AU, = SE,A ("”l)sp,.s 2 Worndh A7)

where E,is the longitudinal modulus of elasticity, the cap area A , is a linear function of
1, and A(n) is the wing depth distribution along the spar line (LIV90) It is necessary to

replace N dependence with y dependence in this expression. Referring to Figure A.3 and
Eq. A.55 the transformation for the bending strain is given by

SYyp— syL)2
yy

= cog2 -
= cos“A-w, -_(
co Woss 7

w,
m (A.73)

The depth distribution may be written as a function of y by substituting the spar line equa-

tion from Eq. A.57 into Eq. A.45 giving
Nh

mh,
h(y) = Y Hy- (Sly+852) ™y
k=1 (A.74)

nhy,
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The cap area is also easily expressed as a linear function of y as shown in Eq. A.56. Sub-
stituting Egs. A.55 and A73 into Eq. A.72 gives

1. (SYr—sy.) hiy)? 2
Uy = 3E; (_R__L) A sp-_(iiw’yydy
s (A.75)

Using Egs. A.8 and A.61 to define w(x,y,t), Eq. A.75 becomes

2
au, = %Ejs(sy—st——yL)?,A 01,9 40,1 (o) Ly} (0,
(A.76)
Integrating this over the length of the spar gives
L (YR= LY pesve XN
Ujs = iEjs('T_) A0V,
(A7)

T
{q,} ta,., a1 {q tdy

Application here of the variational extremum condition from Eq. 1.10 yields the stiffness

matrix for the jsth spar given as

_ 'SYR_SyLY =S¥k h()’)2 r

P L (A.78)
Substituting Eq. A.56 for Asp. and Eq. A.74 for h(y) here gives
Js
Nk Nh
}’R syL =5y

_ Js
- Z z H‘k ]k( ) J’yy=sylLa (AsPOjs +ASP1jsy)

zk 1jk=1 (A.79)

mhy, +mhy nhy +nhy, T
- (S1y +52) y {a,.,} {a,.,} dy

Now differentiating Eq. A.61 twice with respect to y gives
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r 2 mg;~2 ng,
{aw,yy} = {...,mq;(mgq;—1) 51 (S1ly +82) y
mQ1_1 nqi—l
+2mqnq,S1(Sly +S52)
(A.80)
lL—Z
+nq;(nq;— 1) (S1y+S2) yeee }
It follows that the i,jth term of {awy}{amyy}Tcan be given by
> mY(i,j), nY(iJj)
term(i,j) = ¥, AY(i.j),(S1y+S2) P
— (A.81)

where AY(i,j),, mY(i.j),, and n¥Y(i,j), are given in Table A.1 (LIV90). Upon substitution of
Eq. A.81 into Eq. A.79, the stiffness matrix term in the ith row and jth column for the jsth

spar may be expressed as

E Nh Nh 5
(K, ()], (yR syL) Y Y HH, Y AY (),

ik=1jk=1 r=1

L SYr
: = 1
[A”’Ofs(syg—sn)ﬁ sy, (B1Y +52)" dy (A.82)

L SYR m n+ 1
A 1,-5( e SyL) P (sty+s9)™y" Ly ]

Table A.1: Coefficients and Powers for Curvature Along a Spar Line

r AY(iy), mY(ij), nY(i ),
1 (mq)(mg;)(mg-1)(mg-DS1* mq-4 + mq; ng; + ng;
2 2(mg;)(maq;)(mq;- 1)(nq,>513 mgq;+ mq;-3 ngsng;-1
+ 2(mg;)(mg;)(mg-1)(ng)S 13
3 (mq)(ng;)(mq-1)(ng; 1>512 mq-2 + mg; ng; + ng;-2

+ 4(mgq;)(mg;)(ng)(ng;)S 12
+ (ng,)(mq)(ng-1)(mg;-1)S 12

4 2(mg;)(ng;)(ng-1)(ng)s1 mq+maq;-1 ng; + ng;-3
+ 2(nq;)(mg;)(nq-1)(ng)S1

5 (ng)(ng)(ng:-1)(ng;-1) mgq; + mg; ng; + ng;-4
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where
m = mY(i,j) +mh,, +mh,
r ik jk (A83)
n = nY(i,j), +nh, +nh.
A (A.84)

Noting that Eq. A.82 is composed of linear combinations of the integral family Zgx(m,n)
defined in Eq. A.70, the final expression for the i,jth term of [K,,];; is

Ejs SYp—SY, 4 Nk Nh 5
(K, (L] = —;4—(——[4—) > N HH DAY QL))
ik=1jk=1 r=1 (A.85)

: [Aspojslsp(m, n) +Asp1jsISP(m’n+ D] |

(LIV90). The stiffness matrix for all the spars combined [K,,],, is obtained by summing
the contributions of all the spars given by Eq. A.85. Because the wing is assumed to be
symmetric with respect to the x-y plane, the total spar contribution can be found by sum-
ming the contributions from the spars on the upper wing surface and then multiplying by
2. This matrix is then appropriately merged into the global stiffness matrix [K,,,].

- A.9 Mass Matrix Contributions of a Rib

Neglecting rotary inertia the contribution to the kinetic energy T of an element of
length dx of the jrth rib is

1 .2
dT;, = 5p;,A (x) , W dx (A.86)

where pj, is the constant material density of the rib, and the cap area A, is a linear func-
jr
tion of x (LIV90). The rib cap area defined in Eq. 1.4 is given by

Arbjr (x) = ArbOjr +Arb1j,x (A 87)

Using Eq. A.8 for w(x,y,1), Eq. A.86 becomes




YRIB y

(rx ) :
L V(rxpyrie)

(rxpg1yR)

(rxap,ryR)

(rxa,Yrip)
(rxap,ryr)

Figure A.4: Rib Geometry

T T
dT, = 3p,A (), {d,} {a,} {a,) {4,}dx

Integrating Eq. A.88 over the length of the rib gives
T, = %p,-,jj:j;A (x) ,,,jr{qw}T{aw} fa,} {d,}dx
where the limits of integration rx, and rx, as shown in Figure A.4, are given by
rxp = Flygp + F2
rx, = Alypp+A2

where

FXpp—TX
Fl = FR FL
FYrR—1YVp

erLryR - erRryL

ryR =Ty

F2 =

FXyp—TXap
YR—TYL

Al =

97

(A.88)

(A.89)

(A.90)

(A91)

(A.92)

(A.93)

(A.94)
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FX, ¥y — X, pl
A2 = AL Yr—TX4RTYL
PrT0L (A.95)
Equivalent to Eq. A.89 is the expression
_ 12 X=X, T T »
Tjr - 5.0) pjrszerA (x) rbj,{qw} {a,} {a,} {q,}dx 296

where o is the natural vibrational frequency of the rib. Application here of the variational
extremum condition from Eq. 1.10 yields the mass matrix for the jrth rib given as

M ]. = Jx:m‘A x),, {a,} {a }de
rbd jr pjr X=IXp rhy 2w v (A97)
Substituting Eq. A.87 for A, gives
jr
T
_ X=TX,
[Mrb]jr - pjr.[x=rxp (ArbOj,+Arbljrx) {aw} {aw} dx (A98)

Since y is fixed at a constant value yg; along the rib, the mass matrix term in the ith row

and jth column for the jrth rib may be expressed as

. . X=7X "X=IX
[M,, ()], = pjr[ArbOj,yle e, XX AL YR e X ldx]
(A.99)
where
m = mgq;+mq;
(A.100)
n = nq;+ng;
(A.101)
Let us define a family of integrals where
I.(mn) =yt [ “xmdx
RB RIB )x=
e (A.102)
Then the final expression for the i,jth term of [M,];, is
M, (i,j =p. [A, .1 I
[ rb(l"])]jr P],[ rb0," RB (m, n) +Arblj, RB (m+1,n)] (A.103)

(LIV90). Appendix C discusses how the family of integrals Iyp(m.n) is analytically
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derived. The mass matrix for all the ribs combined [M,,],,, is obtained by summing the
contributions of all the ribs given by Eq. A.103. Because the wing is assumed to be sym-
metric with respect to the x-y plane, the total rib contribution can be found by summing
the contributions from the ribs on the upper wing surface and then multiplying by 2. This
matrix is then appropriately merged into the global mass matrix [M,,,].

A.10 Stiffness Matrix Contributions of a Rib

The contribution to the potential or strain energy U of an element of length dx of the
Jrthrib is

2
’xx

dx

2
1 h(x)
dU. = zE. A (x) w
Jro 2T 4 (A.104)
where E;, is the longitudinal modulus of elasticity, the cap area A , is a linear function of
x, and h(x) is the wing depth distribution along the rib line (LIV90). The depth distribu-
tion may be expressed as

mh,k nhy,
h(x) = Z Hy YRIB

ik=1 (A.105)

since y is equal to a constant yg,;; along the length of the rib. Using Eq. A.8 for w(x.,y,?),
Eq. A.104 becomes

dU, =3B A (), "(") fa,) (a0} {ay,,) fa,}dx
(A.106)

Integrating this over the length of the rib gives

1 x= rxA

h (x)
Ujf = E,Ejrjx rXp ( )rb

T
{a,} {a et Lot 19,1 dx
, (A.107)

where the limits of integration have been defined in Eqs. A.90 and A.91. Application here
of the variational extremum condition from Eq. 1.10 yields the stiffness matrix for the jrth
rib given as

T

X=1X, h(x)
[K,,]. =E,xmA() {a,, .}t 14, d
oljr = B * (A.108)
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Substituting Eq. A.87 for A, and Eq. A.105 for h(x) here gives
E, Nh Nh —rx, mhy +mh, nhy+nhy
[K,p) 5, = -fZ > HyHy x:,xix YRip
ik=1jk=1 (A.109)

T
’ (ArbOj,+Arb1j,x) {aw’xx} {aw’xx} dx

Now differentiating Eq. A.9 twice with respect to x and setting y equal to a constant ygp
gives
(@t = {oroma, (mg,= DA™y )
a, = {...,mq.(mg,—1)x Ypips o -
woxx i i RIB (A1l O)
Upon substitution of Eq. A.110 into Eq. A.109 the stiffness matrix term in the ith row and

jth column for the jrth rib may be expressed as

E. Nh Nh
(K, (L], = —i—’z > HyH,AX (i, )
ik=1jk=1 (A.111)

n =rX, m n (x=rx, m+1
' [ArbOj,yRIB x=rx, dx+ArbljryR1Bjx=erx dx]

where

AX(i,j) = mg;(mq,—1)mq;(mg;—1)

(A.112)
m = mq,+mq;—4+mhy +mh (A.113)
n = ng;+nq;+nhy +nhy (A.114)

Noting that Eq. A.111 is composed of linear combinations of the integral family Irz(m.n)
defined in Eq. A.102, the final expression for the i,jth term of [K,];, is

Nk Nh
(K, D15, = T”z > HyH,AX (i, J)
ik=1jk=1 (A.115)

: [ArbOerRB(m’ n) +ArblerRB (m+ l,n)]
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(LIV90). The stiffness matrix for all the ribs combined [K,,],, is obtained by summing the
contributions of all the ribs given by Eq. A.111. Because the wing is assumed to be sym-
metric with respect to the x-y plane, the total rib contribution can be found by summing
the contribution from the ribs on the upper surface and then multiplying by 2. This matrix
is then appropriately merged into the global stiffness matrix [K,,]-




Appendix B:
Analytical Foundations of an Equivalent
Plate Model Using FSDPT

B.1 Overview

In this appendix are derived the equations necessary to construct mass and stiffness
matrices for wing structural components based on First Order Shear Deformation Plate
Theory. This appendix starts with a discussion of the assumptions of the theory and the
ensuing strain-displacement relationships. Displacement functions are then defined. Fol-
lowing this foundation are the derivations of the mass and stiffness matrix equations for a
single skin layer. These are followed by the derivations of the mass and stiffness matrix
equations for a single spar and a single rib. Last are the derivations of the mass and stiff-

ness matrix equations for a single spar web and a single rib web.

B.2 Assumptions

First Order Shear Deformation Plate Theory (FSDPT) differs from Classical Plate
Theory in that the Kirchoff-Love assumption is not employed. Rather, it is assumed that
plane sections normal to the plate’s midsurface remain plane but not necessarily normal to
that surface after deformation. This is analogous to Timoshenko beam theory (RE84).
Hence, the shear strains ¥,, and ¥,, may not be ignored. It is assumed that the out of plane
diéplaccments are small, and there may be in-plane displacement of points at the plate’s
mid-surface. It is assumed that the transverse normal strain €, is negligible since the
transverse deflection does not vary through the thickness of the plate. This requires that
the transverse normal displacement w be a function of x and y only.

There is no requirement that the wing structure must be symmetric. Spar webs and
rib webs are included in the model along with the skins, spars caps, and rib caps. Itis not
assumed in the general case that skin thickness is small compared to the wing depth.
When this is assumed then it may also be assumed that all the skin layers in each of the
upper and lower skins have the same depth distribution (LIV194).
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B.3 Strain-Displacement Relationships

The established assumptions allow the displacements in the x, y, and z directions

respectively to be approximated by

u(x,y,2) = uy(x,y) +zy,(xy)
(B.1)
v(xy,2) = v (5 y) +2y, (x,y)
(B.2)
w(x,y,2) = wy(x,y)
(B.3)

where u,, vy, W, are the x,y,z displacement components of a point along the reference mid-
surface, and W, and W, are rotations of a line element, originally perpendicular to the mid-
surface plane, about the y and x axes respectively (RE84,LIV194). The associated strains

are given by

€ = a_u = a_uo + E)}l_fx

xx Bx B ax Zax (B4)
d d

& = ?—V_ ot _vO+z_‘.l_Iy

»oody dy 9y (B.5)

du dv _ Oy 9vg LB\I& awa

boE R s -
ow,,
Yoz = Vit
‘ ox (B.7)
ow
Yy = Wy+§—0
y (B.8)

(LIV194,RE84). These displacement and strain relationships form the basis for the mass

and stiffness matrix formulations.
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B.4 Displacement Functions

To use the Ritz method described in Chapter 1, it is necessary to approximate each of
the 5 x,y,t dependent deformation fields by a polynomial series given in vector form by

T
uy (x,y,8) = {a, (xy)} {q,(H}

(B.9)
T
(xy, ) = {ay(x, )} {g,(0)}
Yoi%Y GTHYE 0 (B.10)
T
v, (xy,t) = {az(xy)} {g5(D}
(B.11)
T
’ 7t = 5 t
v, 0000 = {a, (60} {a,(0} .
T
wy(x,3,8) = {as(x, )} {q5(1)}
(B.13)
whe_re
r mql; ngl,
{fa, ()} = {..x ¥y ..}
(B.14)

and similar expressions are used for {a,}7, {a:}T, {a,}T, and {as}T (LIV194). The column
vectors {q;}, {g2}, {gs}, {gs}, and {gs} contain the polynomial coefficients which are the
generalized displacements solved for in the Ritz formulation. These polynomials have
Ng,, Ng,, Ngs, Nq,,, and Ngs terms respectively, and the x and y powers are predetermined.

B.5 Mass Matrix Contributions of a Skih Layer

Let the vectors {q:}, {42}, {¢3}, {¢.}, and {gs} be combined into one column vector

of generalized displacements {g} where

T T T T T T
{q} = {qI?QZ:Q39Q4sQ5}
(B.15)

Substituting Egs. B.9-B.13 into Eqgs. B.1-B.3 allows the u,v,w components of deformation
to be written in terms of {g}. This is given by
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= {[Sgex )] +z[$; (x 11 {q(0)}
(B.16)

Sl <

. .. . S0(r, i) nSO(r,i
where S, and S, are matrices containing polynomial terms of the form x" r ’)yn .9

and mel (r, Q) ynSl (r,0)

(s=1,2,..,5), the matrices are given as

respectively. Partitioned into subvectors of dimension 1 x Ng,

@ 0000
[So(x, 0] = T
0 0a, 000 B.17)
0 000a;
00a; 00
(S, (1] = T
: 000 a0 (B.18)
000 00
where both are 3 x Ng,,, in dimension with
Ng, . = Ng,+Ng,+Nq,+Ng,+ Ng
tot 1 2 3 4 5 (B.19)

based on the length of the subvectors.
Now the contribution to the kinetic energy 7 of an infinitesimal skin element dx by dy
of the jlth skin layer is

T

dxdy

i

| -

Ty = 3Puty (%)) v B.20)
W

S RN B

where p;, is the constant material density of the skin layer, and £;(x.y) is the thickness of the
skin layer given in Eq. 1.2 as
m, m,

Nt
g (xy) = Y Ty -x 'y
) J
! P B.21)
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(LIV194). Substituting Eq. B.16 into Eq. B.20 gives
dT; = 1 5Pl (%) {4} [s4s +z(S S )+Z(s S )+z (s S )]{q}dxdy
(B.22)
Integrating this over the whole trapezoidal panel area yields
1 AT eT T T 2( oT .
= Lo Tty o 1y sts o558, ) o 875, )+ 2575, ) T €y asay
yx (B.23)
Equivaléntly,
1 IrT T T 2( T
= szpjljjtjl (x,y) {q} l:SOS0 +z(S0S1) +z(SlSO)+z (SISI)] {q}dxdy
yx (B.24)

where  is the natural vibrational frequency of the skin layer. The variational extremum
condition from Eq. 1.10 applied here becomes

dq; (B.25)

yielding the mass matrix for the jlth skin layer given as

T T T 2( T
Myl = 0 [ (%) [SOSO+z(SOS1)+z(S1SO)+Z (SISI)]dxdy
yXx

(B.26)

(LIV194). Substitution of Eq. B.21 for #,(x,y) gives

pﬂz ,“ st +z(sgsl)+z(sfso)+z2(sfsl)]dxdy

(B.27)

The variable z is assigned the value of the depth distribution of the jith skin layer given in
Eq. 1.1 by

4 mhy, nh,
hjl (x’ y) - 2 Hjl~k .x ky &
k=1 (B.28)
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Substituting this into Eq. B.27 gives

,zZ [j P ””‘(s S )dxdy

yXx
2 llkJ-J-xmt,C +mh; kym‘k +nhy, [(S < ) + (SZ‘SO)] dxdy
ik=1 yx (B.29)

Nh; Nhy

mt, + mhy, +mhy i +nhy + nhjk( T
+ 2 2 il jlijx Y §)8, Jdxdy }
ik=1jk=1 yx

The mass matrix term in the ith row and jth column for the jlth skin layer may be

expressed as

Nz,
(M, ()], —p,,zz [j X"y dxdy

k=1r=1 yx
Nh,
(“xm y dxdy+”x y a’xdy)
;k 1 yx (B.30)
Nk, Nhy,
m4 n4
+2 2 L ]leJ- Xy dxdy}
ik=1jk=1
where
ml = mtk+mS0 (r,1) +mSO(r,))
B.31)
nl = ntk+nSO (r,i) +nS0(r,j) |
(B.32)
m2 = mtk+mhik+mS() (r,i) +mS1(r,Jj)
(B.33)
n2 = ntk+nhik+nSO(r, i) +nS1(r,j)
(B.34)
m3 = mt, + mh, +mS1 (r,i) + mSO(r, j)
(B.35)

n3 = nt,+nh,; +nS1(r,i +nS0(r,))
(B.36)
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m4 = mtk+mhl.k+mhjk+mSl (r,i) +mS1(r,))
(B.37)
nd = ntk+nhik+nhjk+nS1 (r,i) +nS1(r,j)
(B.38)

Noting that Eq. B.30 is composed of linear combinations of the integral family Izz(m,n)
defined in Eq. A.21 and discussed in Appendix C, the final expression for the i,jth term of
(Ml is

Nt 3

[Msk (la])]ﬂ = PﬂEZlek [ITR (ml,n2)

k=1r=1

Nh, '

+Y H, (I.,(m2,n2) +I1(m3,n3))
ikg‘l Tl LK (B.39)
Nk, Nh;,

+ 2 2 HjlikHﬂjkITR (m4, n4) ]
ik=1jk=1

The mass matrix for all the skin layers combined [M,],,, is obtained by summing the con-
tributions of all the layers given by Eq. B.39. This matrix is then appropriately merged
into the global mass matrix [M,,,,].

B.6 Stiffness Matrix Contributions of a Skin Layer

Each skin layer is treated as a plane stress panel for which the only strains of concern
are €, €,, and v, Substituting Eqs. B.9-B.13 into Egs. B.4-B.6 allows these strains to be
written in terms of the generalized displacements {g} defined in Eq. B.15. This is given
by

Sxx

e, [ = {[Ry(x»] +2[R (s} {a() (B.40)

Yy

where R, and R, are matrices containing polynomial terms of the form

C (r, i) meO'(r, i) ynRO (r, i) and C (7‘, i) mel (r, i) yan (r, i)

subvectors of dimension 1 x Ng, (s=1,2,...,5), these matrices are given by

respectively. Partitioned into
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- T -1
a;,, 0 000
[Ry(x, )] = !
0 0 a2y000 B.41)
T
e az,x 00 O
00day,, 0 0
[Ry(x, )] =
1 00 O a4y0 (B.42)
00 a3,y az,x 0
where the notation for the partial derivatives is defined by the examples
T d T mql; -1 nql;
ap, =5-{a)} = {oomgli-x "y
X (B.43)
and
T ] T mql; ngl;—1
a,, = a_.{al} = {...nql;-x "y .
y (B.44)

Both matrices are 3 x Ng,,, in dimension with Ng,,, having been defined in Eq. B.19.
Now the contribution to the potential or strain energy U of a infinitesimal skin ele-

ment dx by dy of the jlth skin layer is

T
Sxx Exx
dUy = st (60 ) &, [ 1Q1;) &, (dxdy (B.45)
Ty Yy

where [Q]; is the material constitutive matrix of the skin layer, 3 x 3 in dimension, as
defined in Egs. A.26-A.37, and f;(x,y) is the thickness of the skin layer given by Eq. B.21
(LIV194). Substituting Eq. B.40 into Eq. B.45 gives

U, = L (x,y) {q} [R [Q1 R, +Z(R [Q]JIR)

Jjl 2°jl
(B.46)

v RT101,R, )+ 2( R 101 R, )T {a} dxay
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Integrating this over the whole trapezoidal panel area yields

Jl

= ; [J12 ey a1 [RLQ1 4R, + Z(R(f [0] le1>
y¥ | (B.47)

T of T .
+z(R1 [Q]j,Ro)u (R1 [01,R, ) ] {a} dxdy
The variational extremum condition of Eq. 1.10 applied here becomes

dg; (B.48)

yielding the stiffness matrix for the jlth skin layer given as

(K, = [[ta o [Ro[01 4Ry + z(R§ [0] ,.,Rl)
yx | (B.49)

T 2 T
+Z(R1 [Q]ﬂRO) +2 (Rl [Q]lel) dxay
Substitution of Eq. B.21 for £,(x,y) and Eq. B.28 for the variable z gives

Nt

[Ksk]ﬂ l I:J»J mi, ntk(R(T)[Q]leo)dxdy

Nh;,

jllJJxmtk + mhlkyntk +nhy, [(R [Q] ) " (R{ [0] ﬂRO)] dxdy
zk 1 yx (B.50)

Nh; Nh,
mtk+mh +mhy ntk+nhlk+nhjk( T )

ik=1jk=1

Let the r,ith term of the matrices R, and R, be

RO (7‘, i) _ Ro (r’ i) meO(r, i)ynRO(r, i)
(B.51)




(K (i),

where
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Rl (r’ i) _ jé] (r’ i) mel (r, i)yan (r,i)
(B.52)

respectively. Upon substitution of Egs. B.51 and B.52 into Eq. B.50, the stiffness matrix

term in the ith row and the jth column for the jlth skin layer may be expressed as

Nty 303 Ll
A = “ . m n
= ZZZTﬂk[Ro(r, ) Ro (s, J) [[&" 5" dxdy
k=1r=1s=1 yx o
Nhy,
~ N . 2 n2
+2HjlikR0(r’ DRy (s,)) ”xm v “dxdy
ik=1 yx (B.53)
Nh,
~ = . 3 n3
+2 H; R, (r, )Ry (s, )) jjxm y" dxdy
ik=1 yXx
Nh, Nh;,
== 4_nd
+X Y Hy Hy Ry (5 )Ry (5.)) [ a’xdy]
ik=1jk=1 yx
ml = mt, + mRO (r, i) + mRO (s, j)
(B.54)
nl = nt, +nRO (r,i) +nRO (s, )
(B.55)
m2 = mt, +mh, + mRO (r,i) + mR1 (s, )
(B.56)
n2 = nt,+nh; +nR0O(r,i) +nR1 (s,])
(B.57)
m3 = mt, +mh, + mR1(r, i) + mRO (s, J)
(B.58)
n3 = nt, +nh, +nR1(r,i) +nRO(s,j)
(B.59)
m4 = mt, +mh, + mhjk +mR1(r,i) +mR1(s,]))
(B.60)

nd = ntk+nhik+nhjk+nR1 (r,i) +nR1 (s,))
(B.61)
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Noting that Eq. B.53 is composed of linear combinations of the integral family I7z(m.n)
defined in Eq. A.21, the final expression for the i,jth term of [K,]; is
Nt; 33
(K, ()1, = 2% % T [Ro (1 i) Ry (5, ) Ipg (m1, m1)
k=1r=1s=1

Nh,,
+3 Hy Ro (r, ) Ry (5,j) Izg (m2, n2)
ik=1 (B.62)
Nh,
+ > Hjy R, (r,0) Ry (5,]) Ipg (m3, n3)
ik=1
Nhy, Nh,,
+ 2, X Hy Hy Ry (r, ) Ry (5,)) I (m4, nd) ]
ik=1jk=1 ‘

The stiffness matrix for all the skin layers combined [K],,, is obtained by summing the
contributions of all the layers given by Eq. B.62. This matrix is then appropriately merged
into the global stiffness matrix [K,,,].

B.7 Mass Matrix Contributions of a Spar

The contribution to the kinetic energy T of an element of length dn of the jsth spar is

T

1
ATy, = 30A (.,

u

v (dn
- (B.63)
w

o= &

where 1 is the coordinate along the spar axis rotated from the y axis by an angle A, p;, is
the constant material density of the spar, the cap area A sp is a linear function of 1, and the

Ji
velocity vector is the time derivative of the displacement vector defined in Eq. B.16.

Referring to Figure A.3, all 1} dependence of Eq. B.63 may be changed to y dependence.
Substituting Eq. A.55 for dn into Eq. B.63 and allowing the cap area to be expressed as a
linear function of y gives ‘

T

u u
1 L - -
T}, = QP,-S( S syL)A(y) AN v dy 560
W W ‘
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Substituting Eq. B.16 into this gives

1 L A TraT T
T}, = ipjs(_—_)A g, 14} [SOSO+Z(SOS1)
YRTHL g (B.65)
+z(sfso) + zz(sfsl) ] tardy

Here the spar line equation from Eq. A.57 may be employed to express x within the matri-

ces S, and S, as a function of y. Therefore the polynomial terms contained in S, and §, take
the form (S1y+S2) mS0 (r, i) ynSO(r, i) and (Sly +52) mS1(r, i) ynSl (r, Q)

respectively.
Integrating Eq. B.65 over the length of the spar now gives

_ 1 L =5Vx L T[T ( T )
T = QPJ-S(W)K=SYLA ) gp, 1} [S58,+2 5,8,

| (B.66)
+z(sfso) " ZZ(SITSIJ] {4} dy
Equivalently,
T, = s0%p,( —=— =" a0, (a17[5S +z(sTsj
js = 29 Pis SYR— 8y /oy= 0 Y sp;, 14 0~0 0™1 BET)

+z( sto) ¥ ZZ(SITSJ 1143 dy

where @ is the natural vibrational frequency of the spar. Application here of the varia-

tional extremum condition from Eq. 1.10 yields the mass matrix for the jsth spar given by

— L =SYr r ( T )
Mopls = pjs(syR—syL)ﬁﬂyLA (y)w,-sl:SOSoJrZ $051

+z(S1TSO) + zz( stl) ]dy

Substituting Eq. A.56 for the cap area and Eq. A.74, the spar depth distribution in terms of
y, for the variable z gives

(B.68)
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L =5y T
(M) = pfs(s_—yR—syL)[ P (AspOjS+Asp1jsy)(S0S0)dy
sy hy nhy T T
2 ) K or(S1y +52) "y (Agpo, +Ap1, ) [(sosl) +(S1S0):|dy
k=1 (B.69)
A hy + mhy, nhy +nh
sy mhy +mny, no, + R, T
+Y EHJ.SM e sf (Sly +§2) y (Aspojs+Asp1jsy)(S1S1)dy]
ik=1jk=1

The mass matrix term in the ith row and jth column for the jsth spar may be expressed as

. 3
(M, ()1, = P s |2 [ o g, + A, 2) STy +52™"d

SYp =SV - =YL

sy m2 n2 m3 n3
+2 mg “ (Ao, + A1) [(S1y+52)"%" + (S1y+52)™y" ]dy
ik=1 (B.70)
Nh, Nk,

=SVg m4 nd
+Y Y H, H ﬁ T (Agyg, + Ay Y) (S1y+52)" " dy ]
ik=1jk=1

where

ml = mSO0(r,i) +mSO0(r,J)

(B.71)
nl = nS0(r,i) +nS0(r,Jj)

(B.72)

m2 = mhy +mS0 (r, i) + mS1(r,j)
(B.73)

n2 = nhy +nS0(r,i) +nS1(r,))
(B.74)

m3 = mhy +mS1 (r,i) +mS0(r, )
| (B.75)

n3 = nhy +nS1(r,i) +nS0(r, )
(B.76)

mé4 = mhik+mhjk+mS1 (r,i) +mS1(r,J)
®B.77)
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nd = nh, +nh, +nS1(r,i) +nS1(r,j)
! (B.78)

Noting that Eq. B.70 is composed of linear combinations of the integral family Isp(m,n)
defined in Eq. A.70 and discussed in Appendix C, the final expression for the i,jth term of
(M) 1s

3
(M, ()], = PisD, [Agpo, Isp (m1,n1) + A, Tgp(ml,nl+1)

r=1

Nk,
+ X Hy Ao Ugp(m2,n2) +1gp (m3,n3))
ik=1
(B.79)

Nh,,
+> Hy Ay, Usp(m2,n2+1) +1gp (m3,n3+1))
ik=1
Nh,, Nh;,
Y X H Hy (A Isp(md,nd) +A,, Igp (mé,nd+1)) ]
ik=1jk=1

The mass matrix for all the spars combined [M,,],, is obtained by summing the contribu-
tions of all the spars given by Eq. B.79. This matrix is then appropriately merged into the
global mass matrix [M,,,,].

B.8 Stiffness Matrix Contributions of a Spar

The contribution to the potential or strain energy U of an element of length dn of the
Jsth spar is

1 2
Whe = 25 N Ean® (B30)

where E;; is the longitudinal modulus of elasticity, the cap area A 5P, is a linear function of
s

the spar line coordinate M, and € is the normal strain along the spar axis. Referring to

n
Figure A.3 and using standard tensor transformation rules, the normal strain in the 1 direc-

tion may be written in terms of strains in the x and y directions by
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8xx

e,n = {TR} 1 ¢

m 4 (B.81)

Yy

where
{TR}T = {sin?A, cos?A, sinAcosA} = {s2A, c2A, sAcA}

(B.82)

The spar cap area may easily be expressed as a linear function of y as shown in Eq. A.56.
Substituting Eq. A.55 for dn and Eq. B.81 for €nn into Eq. B.80 gives

T
8xx gxx
dU. = LE (—i—)A( ) [TRY {TR} T d
s = 25 sypmsy, )0 | w7 @3
Ty Tey

Define

’ (s*A)  (s2Ac2A) (s3AcA)
[Q,,] = {TR} {TR} = |(s2Ac2A) (c*A)  (sAC3A) B.54)
(s3AcA)  (sAc3A) (s2Ac?A) ‘
Substituting Egs. B.40 and B.84 into Eq. B.83 gives

1

dU. = —E.( L

52 syp— sy,

W0y, 0y R 10,1 R, + {rle, ;)
(B.85)

(k10,18 )+ 2’1000 )] 101

Here the spar line equation from Eq. A.57 may be employed to express x within the matri-
ces R, and R, as a function of y. Then the polynomial terms contained in R, and R, take the
form C(r,i) (Sly+52)™°DyROCD and € (r, i) (S1y +52)™F (7D kD
respectively. Integrating Eq. B.85 over the length of the spar yields
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1 L =5y, Tr T T
Ujs = §E/‘S(syR——sy—L)ﬁ=s§LA ) g, L2t [Rol2,,] ROH(RO[QS[)]RJ (B.86)

sz R 1O, IR, )+ 2 R Q1 R, | ] {a} dy

Application here of the variational extremum condition from Eq. 1.10 yields the stiffness
matrix for the jsth spar given as

[KSP] Js = Ejs( ——L_ )J’izz:A (}7) SPis [R(]; [Qsp] RO + Z(Rg [Qsp] Rl)

SYr—SY..
RO » (B.87)
T 2 T
+z(R1 [0,,] Ro) +27 (Rl [0,,] Rl) av
Substitution of Eq. A.56 for the cap area and Eq. A.74 for the variable z gives
p q
_ L =5Yg T
[Ksp] jl - Ejs(syR — syL) [g:syL (ASPOJ-S + Aspljsy) RO [Qsp] ROdy
SYR Sl S2 hik nh’ik A R R d
2 ]Ssz’y ( y * ) y ( Sp()js + spl y) [Q ] )’
ik=1 (B.88)

4 sy hy nhy T
+2 ﬁ syR (S1y+S2) y (ASPOj-S+ASpljxy)R1 [0,,] Rody
ik=1
Nhy Nhj,

=5Yg mhy +mhy, nhy +nhy T
+2 Z JSik ] J'yZSyL (Sly+S2) y (ASPOjs_’_ASpljsy)Rl [Qsp] Rldy]
ik=1jk=1 .

Eqgs. B.51 and B.52 are used to define the r,ith term of the matrices R, and R, respectively
with x replaced by Eq. A.57. ‘Upon substitution of Egs. B.51 and B.52 into Eq. B.88, the
stiffness matrix term in the ith row and the jth column for the jsth spar may be expressed
as

Ky 1, = Bl )ZZQsp(r )
L

r=1s=1

nd N B . =5V ml nl
[Ro (r, D) Ry (5.) [ (A, +A,1 ) (STy+SD)™ 5" dy
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(B.89)
Nh,
- o = 2 n2
s H, Ro(n DRy (s.) [ (A +Ag; 3) (Sly+52)" Y dy
ik=1
Nk,
~ = . =5y m3 n3
+ Y Hy Ry (i) Ro(s.) [)_F (Age +4,, ) (Sly+52) 7y dy
ik=1
Nh, Nh;,
- = . =5y m4 n4
£ S H, Hy R0 DR (5. [0 (A0 +Ag, 3) (S1y+5D)™y"dy |
ik=1jk=1
where
ml = mRO(r,i) + mRO (s, J)
(B.90)
nl = nRO(r,i) +nRO (s, Jj)
(B.91)
m2 = mhik + mR0 (r; l) +mR1 (S,j)
(B.92)
n2 = nh, +nR0(r,i) +nR1 (s,))
(B.93)
m3 = mh, +mR]1 (r, i) + mRO (s, )
(B.94)
n3 = nhik +nR1 (I’, l) +nR0O (saj)
, (B.95)
m4 = mh,, +mhjk +mR1 (r,i) + mR1 (s,))
_ (B.96)
n4 = nhik+nhjk+nR1 (r,i) +nR1(s,J))
B.97)

Noting that Eq. B.89 is composed of linear combinations of the integral family Isp(m,n)
defined in Eq. A.70, the final expression for the i,jth term of [K]; is

3 3
Ky, ()], = E, Y 3.0, (r)

r=1s=1

[Ro (r D) Ro (s.) (A0 Igp (ml,n1) + Ay Igp (mlnl+1))




119

+ Hy Ro(r, DR, (s.)) (A, po,Lsp (m2,12) + Ay, Iop (m2,n2+ 1))
ik=1 (B.98)

+ 3 Hy Ry (r )Ry (5.0) (A Tsp (m3,n3) + A, Top (m3,n3 +1))
ik=1
Nh; Nhj,

+ 2 D H Hy Ry (B DR (5,)) (Ao Tsp (ménd) + A, Top (md, nd+ 1)) ]
ik=1jk=1 ‘

The stiffness matrix for all the spars combined [K,],,, is obtained by summing the contri-
butions of all the spars given by Eq. B.98. This matrix is then appropriately merged into
the global stiffness matrix [K,,,,].

B.9 Mass Matrix Contributions of a Rib

The contribution to the kinetic energy T of an element of length dx of the jrth rib is
T

1
ir = 30 ), (B.99)

u
v (dx
w

o o=

where p;, is the constant material density of the rib, the cap area A , is a linear function
Jr

of x, and the velocity vector is the time derivative of the displacement vector defined in

Eq. B.16. Substituting Eq. B.16 into Eq. B.99 gives

dT p A, 1a} [SeSe+ z(sgsl) ¥ z(sfso) + z?(sfsl) 1141 ax

Jr
(B.100)

Since y is equal to a constant yg; over the length of the rib, the polynomial terms con-
. . 0(r,i) nSO(r,i ,i) nS1(ri .
tained in S, and S, take the form P l)yz IB(r D and ™ (9 y; IB(r ) respectively.

Integrating Eq. B.100 over the length of the rib now gives

T, = %p Sia @, (a1 S8, +z(s S )+z(S S )+z (S S )]{q}dx
(B.101)
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where the limits of integration rx, and rx, are defined in Egs. A.90 and A.91 referencing
Figure A.4. Equivalent to Eq. B.101 is the expression

T, = %a)zpﬂﬁ AW, {4} "sis +z(S S )+z(s S )+z (S S )] {g}dx
(8.102)

where @ is the natural vibrational frequency of the rib. Application here of the variational
extremum condition from Eq. 1.10 yields the mass matrix for the jrth rib given as

T T T 2 T
(M), = pjrﬁ Z"A (x) rbjr[S0S0+z(SOSl)+z(SlSO)+z (SISI)]dx

(B.103)
Substituting Eq. A.87 for the rib cap area and Eq. A.105 for the variable z gives
X=TX T
[M b] jr = pjr[Jx—rxA (ArbOj, +Arb1jrx) (SOSO)dx
X=TX mh,k nhy, T T
+ 2 ,Jx rx:,. Yrig Arpo, * Arp1,¥) [(Sosl) + (SISO)] dx
ik=1 (B.104)
Wl hy +mhy, nhy +nh
X=rx, Mo, +mh, Rhy+ni, T
+ 2 Z eriker,-quxix YRiB (Arboj, + Arblj,x) (S 15 )dx :I
ik=1jk=1

The mass matrix term in the ith row and jth column for the jrth rib may be expressed as

.. X= rxA ml
[Mrb(l’-])]J p]rZ I:yRIB X=rxp rbO +Arb1jrx)x dx

x—rxA
Z RIB =rrp (ArbO +Arb1 x)x dx
ik=1

=TXy

m3
H; RIB — (ArbOjr+Arblj,x)x dx
ik=1 (B.105)
Nh;, Nh;,

X=TX4 m4
+2 2 JTi jrjkleB X=TXp (ArbOj,+Arb1j,x)x dx]
ik=1jk=1
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where the x and y powers are defined in Egs. B.71-B.78. Noting that Eq. B.105 is com-
posed of linear combinations of the integral family Izz(m,n) defined in Eq. A.102 and dis-
cussed in Appendix C, the final expression for the i,jth term of [M,,];, is

3
(M, ()], = Py, [A,p0, Trp (M1, n1) + 4, g (ml+1,n1)

r=1

Nhy,
+ 2 Hy Ay gy (m2,n2) +1Ipp(m3,n3))

ik=1 (B.106)
Nh,,
+ er,-kArbljr (Igg(m2+1,n2) +1pp (m3+1,n3))
ik=1
Nh;, Nh;,
Y, Y H, Hy (A Ing (md,nd) +A,,, Igg(m4+1,n4)) ]

Jric JTi
ik=1jk=1

The mass matrix for all the ribs combined [M,,],, is obtained by summing the contribu-
tions of all the ribs given by Eq. B.106. This matrix is then appropriately merged into the
global mass matrix [M,,,,].

B.10 Stiffness Matrix Contributions of a Rib

The contribution to the potential or strain energy U of an element of length dx of the
jrth rib is
AU, = *E A(x) , €d
i = 2A O futt (B.107)
where E, is the longitudinal modulus of elasticity, and the cap area A, is a linear func-

tion of x. Using Eqs. B.4, B.9, and B.11 let us define gy

e, = {[Y ()] +2[¥, (a0} {a()}
(B.108)

where
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19y = {ap.a3}

(B.109)

[Yy (0] = [alT,x 0] (B.110)

(Y, ()] = [0 ai,] (B.111)

Both matrices Y, and Y, are partitioned into 2 subvectors, 1 x Ng; and1 x Ng, in dimension
respectively. Since y is equal to a constant yg; along the length of the rib, Y, and Y, con-

mY0, nY0, mYl, nY

tain polynomial terms of the form Cix ~ ypp and Cix Vpip - Substituting Eq. B.108

into B.107 gives

du i = —ErA(x)rb {g} [YTY +z(YT )+z(Y{YO)+22(Y1TY1)] {g}dx
(B.112)

Integrating this over the length of the rib gives

U, = 2E,[*A () s A3} VY, +z(YTY)+z(Y1TYO)+z2(Y:1rY1)]{?]}dx

i~ 2 Jrix=rxg
(B.113)

where the limits of integration have been defined in Eqs. A.90 and A.91. Application here
of the variational extremum condition from Eq. 1.10 yields the stiffness matrix for the jrth
rib given as

E,[ 1A ,bﬁ[;{yo + z( Y§Y1) + z( YfYO) + z2( nyl)] dx

]rxrx

K],
(B.114)

Substituting Eq. A.87 for the rib cap area and Eq.A.105, the rib depth distribution, for the

variable z gives

X=FX
(K., = E; szrx:, (Arp0, + Arp1,¥) (ngo)dx

X=rX mhtk nhtk
+2 jr,,Jx—rxA Yrip Ao, + A1 X) [(ngl)*'(ﬁYo)]dx
ik=1 (B.115)
Nh,, Nh,

x=rx, Mhy +mhy nh+nhy
+Z Z i ]rjij_rxpx YRIB (ArbOj,+Arb1jrx) Yf Y, jdx

ik=1jk=1
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Let the ith term of the single row matrices ¥; and ¥, be
- mY0; nY0,
Y, = Yoix y
' (B.116)
~ mYl; nYl
Y, =Yx 'y
' (B.117)

Upon substitution of Eqs. B.116 and B.117 into Eq. B.115, the stiffness matrix term in the
ith row and jth column for the jrth rib may be expressed as '

« =TX ml
(K, (D], = E; [Yo Yo)’RIBJ _,xA( b0, + A X)X dx

y =rXy m2
+2.H; YO Y, yRIB ey Arpo, ¥ Ay X)X dx
ik=1 (B.118)
=TX4 m3
z Y, Yo, Vi RIBJx=rs, Arbo, t Appy, X)X dx
ik=1
Nhy, Nk,
"X= rxA ma
+2 Z jr,k ]rjle YlleBj - rbojr+A’”blj,x)x dx:l
ik=1jk=1

where

ml = mY0, + mYOj

(B.119)
nl = nY0i+nYOj

(B.120)

m2 = mhik+mYOi+mY1j
(B.121)

n2 = nh.,+nY0.+nYl,
. P (B.122)

m3 = mhik+mYll.+mY0j
(B.123)

n3 = nhik+nY1i+nYOj
(B.124)
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md = mh., +mh., +mYl.+mY1.
T : j (B.125)

nd = nh., +nh., +nYl.+nYl.
o S (B.126)

Noting that Eq. B.118 is composed of linear combinations of the integral family Irz(m,n)
defined in Eq. A.102 and discussed in Appendix C, the final expression for the i,jth term of
[Krb]jr iS

(K, ()], = E;, [Yo,Yo, (A0 Inp (mInl) + 4, Ipg(ml+1,n1))

Nh,,
+ 2 Hy, Yo X1 (A Ing (m2,n2) + 4,0 g (m2+1,12))
ik=1 (B.127)
Nh;,
+ 2 H, V1Yo (A Ing(m3,n3) +4,,) Tpg(m3+1,n3))
k=1
Nh;, Nk,
+ > H, H; Y, Y (4,40, T (m4, n4) + A,y Ing (m4+1,n4)) ]
ik=1jk=1

The stiffness matrix for all the ribs combined [K,,],., is obtained by summing the contribu-
tions of all the ribs given by Eq. B.127. This matrix is then appropriately merged into the
global stiffness matrix [K,,,,].

B.11 Mass Matrix Contributions of a Spar Web Layer

A spar web is positioned in the vertical plane between parallel spar caps on the upper
and lower wing surfaces. This plane is defined to be the N-z plane where M is the coordi-
nate along the corresponding parallel upper and lower spar axes rotated form the y axis by
an angle A. See Figure A.3 for spar line geometry. The contribution to the kinetic energy
T of an infinitesimal element dn by dz of the jlth spar web layer is

T

1
T, = 5Pt (M, z) dndz

(B.128)

S N
Sl o< &
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where p,, is the constant material density of the web layer, the velocity vector is the time
derivative of the displacement vector defined in Eq. B.16, and #,(,z) is the thickness of
the layer. The layer thickness may be expressed as a linear function y only. Referring to
Figure A.3, all  dependence may be changed to y dependence by substituting Eq. A.55
for dn. This gives

T

U u
1 L _ -
T, = X .(—-——)z.() :  tdydz
Jt 2le SYR=5SYL ity _‘i _‘i Y (B.129)
w w

where the parameters L, sy, and sy, may be defined from either the upper spar cap or the

lower spar cap, and the layer thickness is given by

() = To, + Ty (B.130)

Substituting Eq. B.16 into Eq. B.129 gives

AT oT T
e ) () [siso 4 555.) -

+z( SlTSO) + zz(sfsl) 114} dydz

Here the spar line equation from Eq. A.57 may be employed to express x within the matri-
ces S, and S, as a function of y. Therefore the polynomial terms contained in S, and S, take

the form (Sly+S52)"0C Dm0 ng (S1y+52)" Py D regpectively.
Integrating Eq. B.130 over the area of the web layer now gives
1. (L By (xy) (Y=5Yg L TrT ( T )
Tﬂ - ipﬂ(syR—syL) hy (%, ) y:sthﬂ RTH |:SOSO+Z SoS,
: (B.132)

+z( sto) + zz(sfsl) 114} dydz

where the limits of z integration are the depth distributions of the lower and upper spar

caps given respectively by
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Nhy hU, nhU
: U mhU, nhU,
hu(xsy) = Z Hik ky ¢
k=1 (B.133)
Ny hL, nhL
' m i n i
hy(ny) =Y, Hsz'x L
k=1 (B.134)
Equivalent to Eq. B.131 is the expression
1 ' L Y=SYR chy, (x, y) Tr T T
T, = —(02p~(————— | v () La} [SyS +z(S S)
AT Ml ¢y ey dB, (5, y) il 0~0 0”1
YT (B.135)

+Z( SlTSO) + Zz(SlTsl) ] {q} dzdy

where  is the natural vibrational frequency of the web layer. Application here of the
variational extremum condition from Eq. 1.10 yields the mass matrix for the jlth spar web

layer given as

L Y=SYr thy (x,y) T T
(M) 5, = jl( )_[thjh:](x, » O [SOSO +Z(S()S1)

S i)
G (B.136)
+z( SlTSO) + zz(sfsl) dzay
The z integration is performed first analytically using
hy(xy) s 1 s+1 s+l
o @ = Ly ey =k )] -
Eq. B.136 thus becomes
M50 = 0 e P, ) [y G5 9) oy (v ))(STS)
swbd 1 = Pji Sy Sy Jv=sy i Y y\HY) =A%y 00
If,2 2 T T
+§(hU(x, y) —h; (x,y) )((SOS1)+(S1SO))
(B.138)

+%(h2, (xy) - hi (x,y) )(S{SJ Jay




127

Substituting Eq. B.130 for the layer thickness and Eqs. B.133 and B.134 for the spar cap
depth distributions gives

=5y thk nhUk T
(M), = (Sy - )[ lka_syf (TO + 7 y)(SOSo)dy

=V, mhL, nhL, N ( T )
ZHlk sy XY T, 0, + T,y SyS, Jdy

ik=1

Nh Nh,,

=5y, mhU,+mhU, nhU,+nhU, T T
+= z 2 i ]k sy': y (To +T, }’)((Sosl)+(slso))dy

lk 1jk=1

Nh, Nh;

=sy, mhl, +mhL; nhL,, + nhL T T
__2 2 - ]k > syf y (TO +T, y)((sosl)+(slso))dy

ik=1jk=1 (B.139)

Nhy Nhy; Nh,
U U U (y=syz thlk+thJk+th,k rhUy + nhUy + nhUy,
y

32 2 Zsz Jjk lky syL

ik=1jk=11k=1
A P T
, (Toﬂ ¥ Tlﬂy)(Sl Sl)dy
Nh Nh; Nh; :
1 2 2 Z H =5y mhLik+mthk+mhL,kynhLik+nthk+nhL,k
k™" jk lk y=sy,
zk 1jk=11lk=1

N PN T
. (Toﬂ + Tlﬂy)(SlSl)dy]

Substituting the spar line equation from Eq. A.57 for all x, the mass matrix term in the ith

row and jth column for the jith spar web layer may be expressed as
[M,,,, ()] =

3 Nhy,
L U (y=syx Ul_aU1
pﬂ( )2[2 Hyfo o (TO +T; y)(sw +52)" Um0

SYp—§
YR™SYL/ D Lk

Nh,

mL1 nLl
-ZH{;WW(TO +T, y)(Sly+SZ) dy
ik=1
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Nh Nhy,
A U2 nU2 U3 _nU3
2 ZHlk e zi"(Toﬂ+T1ﬂy)( (S1y +52)™ 5" 4 (S1y+852)™y" )dy
zk 1jk=1
NhL Nh,
sye( A A L2 nL2 mL3_ nL3
__2 z i ]k g Sy’:(TOﬂ+ Tlﬂy)( (S1y+S2)m "2 L (Sly +52) y )dy
ik=1jk=1 (B.140)
Nhy NhyNh,
+-2 3 ZHU HoH, [ g’*(TO + 7, y)(Sly+S2)mU4 " ay
ik=1jk=1lk=1
Nh, Nh, Nh,
__2 3 ZHLHLH,kﬁ_;R(TO + 7y y)(Sly+S2)mL4 "L“dy]
ik=1jk=1lk=1
where
mUl = mhU, +mS0 (r,i) + mSO (r,j)
(B.141)
nUl = nhU, +nS0 (r,1) +nS0 (r,j) ,
(B.142)
mL1 = mhL, +mS0 (r,i) +mSO(r,J)
(B.143)
nLl = nhL, +nS0(r, i) +nS0(r,))
(B.144)
mU2 = thik+thjk+mS0(r’ i) +mS1(r,j)
(B.145)
nU2 = nhUik+nhUjk+nS0 (r,i) +nS1(r,j)
(B.146)
mL2 = mhLik+mthk+mSO (r,i) +mS1(r,j)
(B.147)
nlL2 = nhLik+nthk+nS0(r, i) +nS1(r,))
(B.148)
mU3 = mhUy +mhU, +mS1 (r, i) +mS0 (7, j)
(B.149)
nU3 = nhUl.k+nhUjk+nS1 (r,i) +nS0(r,j)
(B.150)
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mL3 = mhL; +mhL; +mS1 (r, 1) + mSO(r,)) (B.151)
nL3 = nhLy +nhLy +nS1(r,i) +nS0 (1, )) (B.152)

mU4 = mhUy + mhUy +mhU,, +mS1 (r,i) +mS1(r, ) (B.153)
nU4 = nhUy+nhU, +nhUy +nS1 (r,i) +nS1(r,)) (B.154)
mL4 = mhL; +mhLy +mhL, +mSL(r,i) + mS1 () (B.155)
nL4 = nhLy +nhL, +nhLy +nS1(r,i) +nS1 (r.J) (B.156)

Noting that Eq. B.140 is composed of linear combinations of the integral family Is(m.n)
defined in Eq. A.70, the final expression for the i,jth term of [M,,]; is

(M, (i.1)] =

3 [ Nhy
Ul 5 A
P, {E Hik( Todgp (mULnUL) + T Ip (mU1,nUL + 1) )

r=1 Lik=1

Nh,
-y ka(TOﬂISP(le, nL1) + T Igp(mL1, nL1+ 1))
ik=1

1NhUNhU
U_ Ul 5 A~
+5 3 Hikij(TOﬂISP (mU2,nU2) + Ty Isp (mU2,nU2 + 1) )
ik=1jk=1

Nhy, Nhy,

1 U, U5 A
52 Y Hikij( Ty Isp (mU3,nU3) + Ty Igp (mU3, nU3 + 1) )
ik=1jk=1
1NhL Nh, _
L_L{ 5 A
5 2 2 Hikij( TOJ-IISP (mL2,nL2) + Tl,-,ISP (mL2,nL2 +1) )
ik=1jk=1 (B.157)
lNhL Nh,
L L{ 5 A
32 > Hl.kij( To dsp (mL3,nL3) + Ty Ip (mL3,nL3 + 1) )

ik=1jk=1
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NhU Nhy Nk,

U U U
+x 2 > D HHH ( Igp (mU4,nU4) + T I, (mU4, nU4+1))
zk—ljk—llk 1

Nhy, Nh, Nh,

__2 S Y HH, (TO Igp (mLA, nL4) + T\ Ig, (mL4, nL4 + 1))]

ik=1jk=11lk=1

The mass matrix [M,,,],, for all the spar webs combined is obtained by summing the con-
tributions of all the spar webs given by Eq. B.157. This matrix is then appropriately
merged into the global mass matrix [M,,,].

B.12 Stiffness Matrix Contributions of a Spar Web Layer

A spar web layer in the M-z plane is treated as a plane stress panel where the only

strains of importance are € and Tnz: From the assumptions stated in section B.2,

nn’ ZZ ’

e,, may be neglected. The normal strain € has been defined in terms of strains in the x-
y plane in Eq. B.81. The shear strain Tz 02Y also be defined in terms of strains in the x-y

plane using standard tensor transformation rules. It is given by

= {sinA, cosA} { Txe } = {sA, cA} { Yoz }
Y

. Yy (B.158)

where A is the angle of rotation of the 1} axis from the y axis. Combining Egs. B.81, B.82,

and B.158 we may write

{ “n } = [TR,] {€}
Yz (B.159)
where

T
{e} = {&,,8 . Vip Yip Yyt
Yy oy e e (B.160)

and the transformation matrix is defined by
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(TR.] = |(2A) (*A) (sAcA) O 0
25 0

0 0 (sA) (cA) (B.161)

Using Egs. B.4-B.13 and Eq. B.15, Eq. B.159 may be expressed in terms of the general-

ized displacement vector {g} in the form

fe3’ = { Wy )] +2[W ()]} {q()}

(B.162)
where _ -
a,, 0 00
T
0 a5, 00 0
Wy ()1 = (47 4T
0 " 415y gy 00 O (B.163)
0 0 a; 0 ag,
0 0 0 d,as,
00ay,, 0 0
00 0 a,,0
(W, (xy)] = T T
00 aj,, dy,, 0 (B.164)
00 0 00
00 0 0 0

The matrices W, and W, contain polynomial terms of the form C (7, i) Ao anO(r’ )
W mWl(r i) rWl(ri)

and C(r,i)x y

sion 1 x Ng, (s=1,2,...,5). Both matrices are 5 x Ng,, in dimension with Ng,, having been

defined in Eq. B.19.

Now the contribution to the potential or strain energy U of an infinitesimal element

respectively and are partitioned into subvectors of dimen-

dn by dz of the jith spar web layer is

T
(n, z){ 8““} [Q]jl{ “m }dﬂdz
Tnz Tnz

1
dU., = ~t.
a2t (B.165)
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Figure B.1: Positive Rotation of Principal Material Axes from n-z Axes

where [O] ji is the jlth layer’s constitutive matrix, and #,(1,z) is the thickness of the layer.
The constitutive matrix, as discussed in Section 1.5, has the form

011 Oi6

[Q]jg =
016 Ogs (B.166)

where its’components are determined for the M-z axis system from [Q] ji» the jlth layer’s
constitutive matrix referenced to its own principal material axes. Assuming the jith layer
to be orthotropic, its invariant properties may be used to determine the components of
[O] ji When the layer’s principal axes are oriented at some angle [ to the M-z axes as

shown in Figure B.1 (JO75). The components of [Q] j may be written as

0, = C1+C20'032[3+C3cos4[3

(B.167)
Dy = —LC,sin2B - C,sin4p
2 (B.168)
Ogs = C5—Cjcos4pP
(B.169)

for which the invariants C,, C,, C,, and C; are defined in Egs. A.33-A.37 (JO75). The
layer thickness may be expressed as a linear function of y only as given in Eq. B.130.
Referring to Figure A.3, all 1 dependence of Eq. B.165 may be changed to y dependence
by substituting Eq. A.55 for dn. This gives
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. ,
1 L £ €
i, = gt { ] ] v
SYR=SYL Yne Ynz (B.170)

where the parameters L, sy, and sy, may be defined from the geometry of either the upper
spar cap or the lower spar cap. Substituting Eq. B.159 into Eq. B.170 gives

1 L T T
du, = "(m)fﬂ (») {€} [TRy5] " [0],[TRys] {&} dydz

2 (B.171)

Let us define

T
= [TR TR
[Q,] = [TRy]" [0];,[TR] B.172)

where [Q,] is 5 x 5 in dimension. Substituting Eqs. B.162 and B.172 into Eq. B.171 gives

aUy = 3 == o) 1 " TwWg e W+ Wiioaw, )
L e 2 (B.173)

+z(W1T[QS] Wo) + zz(wf [0, Wl) 1 {q} dydz

Here the spar line equation from Eq. A.57 may be employed to express x within the matri-
ces W, and W, as a function of y. The polynomial terms contained in W, and W, take the
form C(r,i) (Sly+52)™"0Dy"O0D and C(r, i) (S1y+852)" " 7D yWHED
respectively. Integrating Eq. B.173 over the area of the web layer now gives

Jl hy (x,y)

_ =SYR phy (X, y)
UEE P I L AOR U U ATALE +z(WT[Q]W)(B'174)

+z(vv1 (0w, )+2(W'10,1W, ) ]{a} dzdy

where the limits of z integration are the depth distributions of the lower and upper spar
caps given in Egs. B.133 and B.134. Application here of the variational extremum condi-
tion from Eq. 1.10 yields the stiffness matrix for the jlth spar web layer given as
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Y=Yk thy (X, y) T

Kowpl 1 = (syR—syL)J_ Jiven 2 )[WO[Qf] WO”(Wg[Qs] WI) B0

+z(W1T (0] WO) + z2( W 0,] Wl) dzdy
Performing the z integration analytically using Eq. B.137 gives
Ko = (57 B n 0 [0 G = CALS

(8 -2 ) (Whieaw,)+(wiieaw,))

(B.176)

+%(hfj (x,y) —hi (%, ¥) )(W{[Qs] Wl)]dy

Substituting Eq. B.130 for the layer thickness and Eqgs. B.133 and B.134 for the spar cap

depth distributions gives

e D S (R B U AOF

S)’L

Nh '
LHL =syp mhL, nhL;, (WT )
-y ikﬁ M To,+ Ty [01W, |dy
ik=1
N} Nhy,
i =5y mhUy +mhU,, nhUy +nhU,
) EEHUC ]kysyL y
lk 1jk=1 - ‘
A A T
. (Toﬂ + Tlﬂy)((WO [0,] Wl) + (WIT [0,] WO))dy
Nhy Nh,
_syR mhL; +mth nhL,k+nhL
--2 2 ik ]k.[y syL y
ik=1jk=1 .
A A T
. ( T, + Tlﬂy)((Wo [0,] wl) + (WIT [0,] WODdy
(B.177)
Nh Nhy Nhy,
U U U —SYR mhU,, +thJ,‘+th,,‘ynhU‘k+nhU . +nhlUpy,

3 2 Z ZH Jjk lk 9yL
ik=1jk=1 k=1
. (Toﬂ + ATl.ﬂy)(Wf (0] Wl)dy
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Nh; Nh; Nh; i
HLHL =syp MhLy +mhLy +mhLy nhLy +nhL; +nhLy
—_2 2 2 ik _]k ] y:sny y
ik=1jk=11k=1

. (Toﬂ + le,y)( W{ [0,] Wl)dy ]

Let the r,ith term of the matrices W, and W, be

mWO (r,i) nWO(r,i)
y

W, (r, i) = Wo(r,i) (S1y+S2)

(B.178)

1l

mWl1(r,i) nWl(ri)
Y

W, (r,i) = W (r,i) (Sly+52)

(B.179)

respectively. Substituting the spar line equation from Eq. A.57 for all x in Eq. B.177, the
mass matrix term in the ith row and jth column for the jlth spar web layer may be

expressed as

5 5
K (i =
r=1p=1

Nh

J U~ e . mU1 nUl
3 H W (r, i) Wo(p,])f,y To,+ T1y ) (Sly+52) dy
ik=1

Nh,

ot N T . L1 rnLl1

‘ZH,'LkWo(r’l)Wo(P,J)fy/ (To + T, y)(S1y+S2)m "y

ik=1

Nh N# '

v =syx 5 ( mU2 nv2

+3 Z > HyH [0 To, + Ty y \ Wo () Wy (p) (S1y+52)

zk 1jk=1

mU3
W, (r, ) Wo () (S1y+52)" " )dy
Nh; Nh;
PN A mL2 nl2

--Z ZH,k i y_ii"(To,ﬁTlﬂy)(Wo(r D Wy (p.j) (S1y+52)""

L3
() Wo (o) (S1y +52) ™5™ iy
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Nh, Nh, Nh,
U U U= U4 nU4
32 3 Y HyHy H W () Wy (p,J)F yR(To +T). Y)(51Y+52)m "y
ik=1jk=11k=1
Nh, Nh, Nh,
L 14 nl4
=) ZHlkHJLkHLwl(r DWi () [, (TO + Ty y)(Sly+S2)’" " dy}
ik=1jk=11k=1"
where
mU1 = mhU, +mWO0 (r,i) + mWO0 (p, )
(B.181)
nUl = nhU, +nWO0 (r,i) +nWO0 (p, )
(B.182)
mL1 = mhL, +mWO0 (r,i) + mWO0 (p, j)
(B.183)
nLl = nhL, +nWO0(r,i) +nW0 (p,))
(B.184)
mU2 = thik+thjk+mWO (r,i) +mW1(p,))
(B.185)
nU2 = nhUl.k+nhUjk+nW0 (r,i) +nWl (p,J))
(B.186)
mL2 = mhLik’+mthk+mW0(r, ) +mWI1 (p,J)
(B.187)
nl2 = nhLik+nthk+nWO (r,i) +nWl (p,Jj)
(B.188)
mU3 = thik+thjk+mW1 (r,i) +mWO (p,J)
(B.189)
- nU3 = nhUl.k+nhUjk+nW1 (r,i) +nWO0 (p,J)
(B.190)
mL3 = mhLik+mthk+mW1 (r, i) +mWO0 (p,Jj)
(B.191)
nlL3 = nhLik+nthk+nW1 (r,i) +nWO0 (p,J)
(B.192)
mU4 = thik+thjk+thlk+mW1 (r,1) + mW1(p,J)
(B.193)

nU4 = nhUik+nhUjk+nhUlk+nWl (r,i) +nWl (p,))

(B.194)
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mL4 = mhL; +mhL; +mhLy+mW1 (r,i) + mW1(p, )
(B.195)

nL4 = nhLy +nhLy +nhLy +nW1 (r,i) +nW1(p,j)
(B.196)

Noting that Eq. B.180 is composed of linear combinations of the integral family Is,(m,n)
defined in Eq. A.70, the final expression for the i,jth term of [K,,]; is

55

Ky (1))~ 3,0, (12 p)

r=1p=1

Nh,,
Uxs T NE 4
[ZHikWO(r, i) Wy (p, J) (ToleSP(mUl,nUl) + Ty Igp (mUL nUL + 1)) .
ik=1

Nh,
L= N~ N A

-3 H W (r,8) Wy (. J) (TOﬂISP(le,nLl) + Ty Igp (mL1,nL1 + 1))

ik=1

lNhUNhU :
U, Ul N T o A
=P Hikij( Wo (r, ) W, (p, ) Ty Lsp (mU2,nU2)
ik=1jk=1 ‘
+Wo (r, ) Wy (p ) Ty Igp (mU2,nU2 + 1) )
INhUNhU
U, Ul = N o A
32 > Hikij( W, (r,8) Wo (p. j) T Isp (mU3, nU3)
ik=1jk=1
+W (r, i) Wo (D, ]) T\ Ip (mU3,nU3 + 1) )
1NhL Nh,
L& . -
=) kaij(WO (r, i) W, (p, ) To Igp (mL2, nL2)
ik=1jk=1 ‘
+Wo (r, i) Wy (p, ) Ty Igp (mL2, nL2 + 1) )
(B.197)
Nh; Nh
N Y e A
3 2 ZHikij W, (r, i) Wy (P, J) TOﬂISP(mL3, nL3)
ik=1jk=1

+W, (r, i) Wo (. )) T\ Igp (mL3,nL3 +1) )
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Nh Nhy Nhy,
VUl
+3 ZZEsz i Hy W (7, i)W, (P,J)(To op (mU4,nU4)
lk 1jk=11lk=1
+Ty Igp (mU4, nUA + 1) )
NhLNh Nh,
-_2 2 ZHLHLHLWI (r, 1) Wl (p,])(TO P(mL4,nL4))
ik=1jk=11k=1

+T Igp (mLA4, nLA + 1) ) ]

The mass matrix for all the spar webs combined [K,,],, is obtained by summing the con-
tributions of all the spar webs given by Eq. B.197. This matrix is then appropriately
merged into the global stiffness matrix [K,,].

B.13 Mass Matrix Contributions of a Rib Web Layer

A rib web is positioned in the vertical plane between parallel rib caps on the upper
and lower wing surfaces. This plane is the x-z plane located at y=yg;. The contribution to
the kinetic energy T of an infinitesimal element dx by dz of the jith rib web layer is '

T

1
dTﬂ = 5Pi Ly (x,2) dxdz

(B.198)

S o= =
T o< o=

where pj, is the constant material density of the web layer, the velocity vector is the time
derivative of the displacement vector defined in Eq. B.16, and #,(x,z) is the thickness of the
layer. The layer thickness may be expressed as a linear function of x only given by

t. (.X') = To_ +T1_x
Jt i (B.199)

Substituting Eq. B.16 into Eq. B.198 gives

AT, = 3p,t (0 {41555 +z(s s )+z(s s )+z (S s )] {4} dxdz
(B.200)

Integrating Eq. B.200 over the area of the web layer now gives
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1 hy (X, y) px=rx T T T
T = 501 e Sty (0 {41 [SOSO+2(SOSIJ

(B.201)
+z( sto) " zz(sfsl) 114} dxdz

where the limits of z integration are the depth distributions of the upper and lower rib caps
given respectively by Egs. B.133 and B.134. Equivalent to Eq. B.200 is the expression

1 =TX4 thy (X, y) Tr T T
T, = E“’ZPﬂJ;mF [y () 2} [SOSO+z(SOS1)
(B.202)

+z(SlTSO) + zz(sfsl) 11q} dzdx

where o is the natural vibrational frequency of the web layer. Application here of the
variational extremum condition from Eq. 1.10 yields the mass matrix for the jith rib web

layer given as
_ =TX4 chy (x, ) T T
[Mer]jl B Pﬂrx:,thLu, » i (x) [SOSO +Z(S051)

(B.203)

+z(SfSO) " zz( S'fsl) ] dzdx

Performing the z integration analytically using Eq. B.137 gives
X=X T
(M), = Pty 0 [ (g (5 3) —y (o3 (855, )
If 2 2 T T

+§(hu (x,y) —hy (x,y) )((SOSI) + (5150))

(B.204)

.%(h?j (x,y) —hz (x, ) )(SlTSl) ]dx

Substituting Eq. B.199 for the layer thickness and Eqgs. B.133 and B.134 for the spar cap
depth distributions gives

Ny hU,, nhU
_ U x=rx, mhUy, nhUuf . 7 T
[Mrwb]ﬂ = pjl[ZHik XY (Toj,"' lelx)(SOSO)dx
- ik=1

Nh,

L =rX, mhLik nhLik ] ~ ~ T
) z Hik x:erx Y Tojl + lezx SOSO dx
ik=1
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Nh Nhy,

U U = mhU, +mhU, nhU, +nhU, T T
+= 2 Zsz ) e rx’; y (TO +T1 )((SOS1)+(SlSo))dx

zk 1jk=1

Nh Nh,

—rxA mhL; +mhL; nhL,k+nthk A T T :
- Z Z ik jk x_er y TOI+T1ﬂx S0S1 + S1S0 dx
lk 1jk=1
Nh Nh, Nh,,
HU U U px=rx, mhUy+mhUy+mhU, nhU, + nhU, + nhU,
+3 Z z 2 jx—er Y
zk 1jk=11k=1 ' T (B.205)
: . (Toﬂ + Tlﬂx)(SlSl)dx
Nh Nh; Nh;
H_L =rx, mhLl.k+mth,(+mhL,k nhLy +nhLy +nhLy,
32 X X HHH y
lk 1jk=11k=1

, (Toﬂ + lelx)(sfsl )a’x ]

Since y is equal to a constant ygg for the rib line defined by the upper and lower rib caps,
the mass matrix term in the ith row and jth column for the jlth spar web layer may be
expressed as

(M, (6)];=
Nhy,
xX=rX,( » A mUl nU1
Pﬂz Z ik)x= er(T0j,+le,x)x Yrip 4%
r=1 Lik=1
Nh,
X=IX, mL1 nLl
_ZH{.;L_M (TO +T1 )x Yp1gdXx
ik=1
Nh Nk,
U U px=rx, mU2 nU2 mU3 nU3
2 D HyHy |, .. (TO +T x )( Yrip X yRIB)dx
zk 1jk=1 )
Nh; Nh,
x=rX,{ & A~ mL2 nlL2 mL3 nL3
"2 thk jk x=er(T0ﬂ+T1ﬂx)(x Yrip T ¥ leB)dx
ik=1jk=1 (B.206)
Nh yNhy Nhy
x=rx, [ 2 A mU4 nU4
z 2 ZH lk x= er(T0j1+ T1j1x>x yRIde
zk 1jk=11k=1
Nh Nh; Nh;

X=TXs( 5 4 mlL4 nlL4
3 Z > ZHL Hy x_,xi(ToﬂJf Tlﬂx)x Yripdx

lk 1jk=11k=1
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where the x and y powers are defined in Egs. B.141-B.156. Noting that Eq. B.206 is com-
posed of linear combinations of the integral family Iz(m,n) defined in Eq. A.102, the final

expression for the i,jth term of [M,,,]; is
(M, (i.)] =

3 Nh
Ul 4 .
lezI:ZHik(TOﬂIRB(mUl,nUI) + Tl,-,IRB (mU1 + 1,nU1))
r=1 Lik=1

L
_ZH;(%%IRB (mL1,nL1) +T1ﬂIRB (mL1 + l,nLl))
ik=1

Nh Nhy,
2 ZHlk Jk(TO Ing (mU2,nU2) + Ty Ly, (mU2 + 1, nUZ))
lk 1jk=1

Nhy, Nh,,

+—2 S H, jk(To Ing (mU3,nU3) + Ty Iy (mU3 + 1, nUS))
ik=1jk=1
Nh Nh,

2 zH (TO Tp (mL2,nL2) + Ty Ipp (mL2+1, an))

lk 1jk=1
)Vh Nh;
2 Y H H (To Ing (mL3,nL3) + T Iop(mL3 +1, nL3))

zk 1jk=1

(B.207)

Nhy Nhy Nh,, '
32 3 ZHU “H ,‘,ﬁ(TO Ing (MU4,nU4) + T Ly (mU4+ 1, nU4))
ik=1jk=1lk=1

| N Nty N,
1 2 3 ZHLHLHL( ws (mL4,nL4) + T I, (mL4 -+ 1, nL4) )]

tk 1jk=11k=1

The mass matrix for all the rib webs combined [M,,,,],, is obtained by summing the contri-

butions of all the rib webs given by Eq. B.207. This matrix is then appropriately merged

into the global mass matrix [M,,,,].
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B.14 Stiffness Matrix Contributions of a Rib Web Layer

A rib web layer in the x-z plane is treated as a plane stress panel where the only strains
of importance are €, €, and Y. From the assumptions stated in Section B.2, €., may be
neglected. Using Eqgs. B.4, B.7, B.9, B.11, and B.13 let us define

{ er} = {[Fyx] +2[F, (x» 11O}

Yxz (B.208)
where
~, T T T T
{q} = {49,493 45}
(B.209)
T
a,,. 0 0
[F,(x,y)] = le . a0
0 as das,, _ (B.210)
T
[F, (x,)] = |09 0
0 0 0 B.211)

The matrices F, and F, are 2 x (Ng;+Ngs+Ngs) in dimension and contain polynomial terms
of the form C (r, i) meO (r,9) ynFO (r,d) and C(r, i) mel (r,d) ynFl (r,d)

are partitioned into subvectors of dimension 1 x Ng; (s=1,3.5).

respectively. They

Now the contribution to the potential or strain energy U of an infinitesimal element dx

by dz of the jith rib web layer is

€ ! e
ty (x, ) { *x } [Q]ﬂ{ x> }dxdz
Yez Yz (B.212)

where [O] il is the jith layer’s constitutive matrix, and #,(x,z) is the thickness of the layer.
The constitutive matrix is defined identically to that of the spar web in Egs. B.166-B.169

du, =

N —

where the M axis is defined to be the x axis. The layer thickness may be expressed as a
function of x only as given in Eq. 199. Substitution of Eq. B.208 into Eq. B.212 gives

dU;, = %tﬂ () {a}' [Fo [D1F, ”(Fg[Q]ﬂFl)
(B.213)

+z(Ff (0] j,FO) +'z2(Ff O] lel) 114} dxdz
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Integrating this over the area of the web layer now gives

U, = zr g ZL((X;’)) t; (x) {q} [F [01,,F, +z(F [Q]JIF)
T of T ) (B.214)
+z(F1 [Q]ﬂFO)+z (Fl [Q]ﬂFl)] {3} dzdx

where the limits of z integration are the depth distributions of the upper and lower rib caps
given in Eqgs. B.133 and B.134. Application here of the variational extremum condition
from Eq. 1.10 yields the stiffness matrix for the jith rib web layer given as

er ) J_)):rx,q hy (X, }’) l( )l:F [Q]]IF +Z(F [Q]]IF)

hy(x,y) 7
(B.215)

T of T
+z( F, [Q]ﬂFO) +z (FI [Q]ﬂFl) ]dzdx
Performing the z integration analytically using Eq. B.137 gives

(Kp) = [t 00 [y (6 3) =y (5 y))(F [Q],lF)

X=rXp ]!

Al e e J((Fim )+ (Flone,)

(B.216)
+%(hi, (x,y) —h; (x,y))(Ff[Q]szl)]dx

Substituting Eq. B.199 for the layer thickness and Egs. B.133 and B.134 for the rib cap
depth distributions gives
Nhy,

U X=FX thl nhU T

ik=1

Nh, .
x=rx, mhLy nhLy T '
- z HlLkJ-x—erx ky (TO + T] )(FO [Q] ]lFO)dx

ik=1

Nh, Nhy,
U U (x=rx, thik+thjk nhU, +nhU,
32 T HH y

ik jk ) x= er
. (%ﬂ + Tlﬂx)((Fg [Q]leI) + (FT[Q]leO))dx

ik=1jk=1
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Nh Nh,;
_rxA mhLy +mhL, rhL, +nhL,
D) 2 2 ik Jk x—er
zk 1jk=1
PN 7 T T
(7o, + nx (ot )+ FL1F, ) Jax
(B.217)
Nh Nh, Nhy,

U U U px=rx, thik+thjk+thlkynhUik+nhUjk+nhUlk

D IDIDI L

ik=1jk=11k=1
A A T
. (Toﬂ N Tlﬂx)( F{ (D)4, Jdx
Nh; Nh; Nh;
X=rXx, mhLik+mthk+mhL,k nhLi-k+nthk+nhL,k
——Z 2 2 ik Jk lk x—rxp
ik=1jk=11k=1

. (Toﬂ + Tlﬂx)(FlT [O] lel)dx]

Let the 7,ith term of the matrices F; and F, be

mFO (r, i) ynFO (r, i)

Fy(r,i) = Fo(r,i)x

i

(B.218)

mF1(r, i) nFl(r1i)
y

F (r,i) = F(r,i)x

(B.219)

respectively. Since y is equal to a constant yg; along the spar line defined by the upper and
lower rib caps, the mass matrix term in the ith row and jth column for the jlth spar web

layer may be expressed as

2 2 .
K, ()], =3 305 (o p)

r=1p=1

Nhy,
U~ - w (X=X, & A mUl nU1l
|:z HikFO (r, i) Fo(p,J) ‘[x:rx:-(TOjl—i_ Tlﬂx)x yRIde

ik=1
Nh,
Lz - W (X=1x,{ & A mLl nLl
- z H, Fo(r,i)Fy(p,J) Lzrx';(Toﬂ + Tlﬂx)x Yripdx
ik=1
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Nh Nh,

U U x=rx A = - . nU2
+ - Z ZHlk ]k x-rx;(TOjl-*— Tlﬂx)(Fo(r, l) Fl (p’J)x yR[B
zk 1jk=1
-~ o~ . mU3 pU3
+F1 (r7 Z)FO(pL])x yR[B )d’x
Nh; Nh; 12
— ~ o~ . m nlL2
__z z ]k - rxA(TO +T) x )(Fo(r, DF (p,))x Ypip
ik=1jk=1 5 5 mL3 nL3 (B.220)
+F, (r,))Fy(p,j)x y;m ) X
Nh Nh, Nh
U~ N~ W x=rx,{ a PN mU4 nU4
3 z Z szk Jk lkFl (rs Z)Fl (Pa]) Jx=rxi(TOﬂ+Tlﬂx)x yR!de
ik=1jk=11k=1
Nh, Nh, Nh,
I L4 nL4
-_2 > zHLLkH]kHLFl (r, i) F, (P,J)I_ (To,+T1 x) " Y;emdx]
ik=1jk=11k=1

where

mU1 = mhU, +mF0 (r,i) + mFO0 (p, )

(B.221)
nUl = nhUik+nF0 (r,i) +nFO0 (p,Jj) '
(B.222)
mL1 = mhL;, +mFO0 (r,i) + mFO (p, J)
(B.223)
nlLl = nhLik+nFO(r, i) +nFO(p,J)
(B.224)
mU2 = mhU, +mhU, +mFO0 (r,i) + mF1 (p, j)
J (B.225)
nU2 = nhU, +nhU, +nFO0(r,i) +nF1(p,J)
J (B.226)
mL2 = mhL, +mhL, +mFO0 (r,i) + mF1(p,j)
J (B.227)
nlL2 = nhLik+nthk+nFO(r, i) +nF1(p,j)
(B.228)
mU3 = mhU, +mhU, +mF1(r,i) + mFO (p, j)
J (B.229)

nU3 = nhU, +nhUk+nF1 (r,i) +nFO(p,Jj)
(B.230)
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mL3 = mhLik+mthk+mF1 (r,i) +mFO0 (p,J)
‘ (B.231)
nL3 = nhLy, +nhLy +nF1(r,i) +nF0 (p, )
(B.232)
mU4 = mhU, + thjk+ thlk+mF1 (r,i) +mF1(p,Jj)
(B.233)
nU4 = nhUik+nkUjk+nhUlk+nFl (r,i) +nF1(p,))
(B.234)
mL4 = mhL, +mhL, +mhL,+mF1(r,i) + mF1(p,J)
A i (B.235)
nlL4 = nhLik+nijk+nhle+nF1 (r,i) +nF1 (p,Jj)
(B.236)

Noting that Eq. B.220 is composed of linear combinations of the integral family Zz5(m, n)
defined in Eq. A.102, the final expression for the i,jth term of [K,,,]; is

2 2
(K, (1)1 =2 2 0a (15 p)

r=1p=1

Nhy,
Uz - N S
[2 H, Fo(r,i) Fo(p.J) (TOﬂIRB (mU1,nUL) + Ty Ipp(mUL+1,nUl) )

ik=1
Nh,
-2 HiFo(r,i) Fo (p, j) (%ﬂIRB(le, nLl) + Ty Ipp(mL1+ 1,nL1))
ik=1
Nhy Nhy,
22 szk ]k(FO(r i) Fl (p:])T I B(mU2 nU2)
ik=1jk=1
+Fo (r, ) Fy (P, J) leIIRB (mU2 +1,nU2) )
Nh Nh,
2 thk (Fl (r, i) Fo (P, J) TOﬂIRB (mU3, nU3)
lk 1jk=1

+Fy (r,)) Fo (p. ) lelIRB(mU?: +1,nU3) )
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1NhL Nh,
5 S ZHlLkHJLk(Fo (r,i)Fy(p,J) TOﬂIRB (mL2,nL2)
ik=1jk=1
(B.237)
1NkL Nh,
L L~ . A
) zHikij(Fl (r, i) Fy(p.J) TOJIIRB(mL3,nL3)
ik=1jk=1
4y (r,0) Fy () Ty Ipp (mL3 + 1,nL3) )
Nhy, Nhy Nh,
1 U,U. . Usx n | A
*3 2 ZHikijszFl (r,i) Fy (P,J)(TOﬂIRB(mU4,nU4)
ik=1jk=11lk=1
+Ty Ipg (mUA + 1, nU4) )
lNhL Nh, Nh,
A N
_§ Z z z HikijHll}cFl (7', l) Fl (p,]) (TOﬂIRB (mL4, nL4))
ik=1jk=11k=1

+T Ip (mL4 +1,nL4) ) ]

The stiffness matrix for all the rib webs combined [K,,,],., is obtained by summing the
contributions of all the layers of all the rib webs given by Eq. B.237. This matrix is then
appropriately merged into the global stiffness matrix [K,;,,].




Appendix C:
Fundamental Integrals and Tables

C.1 Introduction

Integrating energy contributions over the geometry of wing components has led to the
definition of three integral families: Irg(m,n), Isp(m,n), and Irg(m,n). This appendix dis-
cusses the analytical solutions to these integrals based on the wing model’s shape design
variables. The discussion starts with the development of a family of solutions to integrals
over the area of a trapezoidal panel. Next is the development of a family of solutions to
integrals over the length of a spar. Last is the development of a family of solutions to inte-
grals over the length of a rib. From these solutions, solution tables of each integral family
may be constructed. These tables need only be calculated once for a particular wing
geometry and may then be referenced multiple times in mass and stiffness matrix calcula-

tions.

C.2 Area Integrals

Derivation of mass and stiffness matrix equations for trapezoidal skin panels has

resulted in the definition of a family of integrals given by

Ip(myn) = meyndxdy

vy €1

where the trapezoidal area of x-y integration is defined by the vertices (Xg.YD), (Xgr:Yr)»
(XapYx)> (taryy) as shown in Figure 1.3. The left and right sides of the trapezoid are paral-
lel to the x axis and located at y coordinates y, and y respectively. Equations for the front
and aft lines of the trapezoid may be written as

Fly + F2

xg ()
F C.2)

I

x,(y) = Aly+A2

(C.3)




respectively, where

Xpp—X
Fl = “FRZTFL
YR™YL

XprVp—X
Fo = “FLR FRYL
Yr™YVL

Al = XAR ~ AL
Yr—YL

A9 = XALYR T *ARYL
Yr™YL

The integral Ix(m,n) may now be written as

_ =Yg R x=xp(y) m
Ig(m,n) = K=yLy Jx=xp(y)x dxdy

Using Eqgs. C.2 and C.3 gives the relationship
[ ax = L[ @Aty +42)" "' = (Fly+ F2)" "]

x=xp(y)

Substituting Eq. C.9 into Eq. C.8 gives

x =Yp R m+1
Ipp(m,n) = I:y=yLy (Aly +A2) dy

m+1

=Yp R m+1
+ﬁ=hy (Fly + F2) dy]

Let us define two secondary integrals I, and I where

Y= Yr_T §
1,(r,s) = ﬁy:yLy (Aly+A2)°dy

and

_ =Yg T s
I,(r,s) = ﬁ=yLy (Fly + F2)°dy
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(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C9)

(C.10)

(C.11)

(C.12)
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Recursion formulas may be used to obtain a closed form evaluation of these secondary
integrals (SP68,LIV90). They are evaluated using the formulas

jy’(Aly +A2) dy=
(C.13)
Yy A1y +A2)° . sA2 s o1
A A2
r+s+1 +r+s+ljy( ly+42) dy
and
r N
Jy (Fly + F2) dy=
(C.14)
r+1 s
y (Fly+F2) sF2 T Fly+ F2) '
r+s+1 +r+s+1y( y+F2) Y
Substitution of Egs. C.11 and C.12 into Eq. C.10 yields a final expression
1 .
I p(m,n) = nT-;_l[IA (n,m+1) —I,(n,m+ 1)] .15

Tables for I, and I, may be constructed for ascending x and y powers using the formulas in
Egs. C.13 and C.14. From these a final table may then be constructed for the trapezoidal
area integrals using Eq. C.15 (LIV90).

C.3 Spar Line Integrals

Derivation of mass and stiffness matrix equations for spars and spar webs has resulted
in the definition of a family of integrals given by

L V=5V m n
Ip(mn) = —=— Sly+52)"y"d
sp () syR—sijy”yb( Yy (C.16)

where the spar line endpoints are defined by the coordinates (sx;,sy,) and (sxgz,syg) as
shown in Figure 1.4, and L is the length of the spar. This integral results form substituting

for x the spar line equation given by
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x(y) = Sly+S82
(C.17)
where
_ §Xp—SX
§1 = R "L
SYp—SYyr, (C.18)
SX, Sy p—SXpSY
¢y = ML YR~ S*RSVL
SYR—SYL (C.19)
Define
=Sy rs
I (r,s) = ﬂzm (Sly +52) ¥ dy 20
which may be evaluated in closed form using the recursion formula
s+ 1 r
I (r,s) = y  (Sly+S2) N rS2 J(Sly+S2)r_1ysdy
r+s+1 r+s+1 (C.21)
Substitution of Eq. C.20 into Eq. C.16 yields a final expression
Isp(m,yn) = ———L———IS (m, n)
SYR—5YL (C.22)

A table of spar line integrals for ascending x and y powers may be prepared using the for-
mula from Eq. C.21 combined with Eq. C.22.

C.4 Rib Line Integrals

Derivation of mass and stiffness matrix equations for ribs and rib webs has resulted in

the definition of a family of integrals given by

. X=rX

where the rib line endpoints are defined by the coordinates (rxgygp) and (rxs,ygmp) as
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shown in Figure 1.4. The coordinates rx, and rx, are determined from the rib shape design

variables using

where

rxg = Flyg,p +F2

rx, = Alypp+A2
Fl = FXpp—TXgy
ryp—ry.

erLryR - erRryL

F2 =
ryp—ryp
Al = FX4p—TX4p
FYrR=1YL
. FXA PR = TXARTYL

ryp—ryp

The rib integral is easily evaluated and given by

m+1

n
YRriB
IRB(m,n) = m[rxA —rXy

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

This equation may be used to construct a table of rib integrals for ascending x and y pow-

€rs.




Appendix D:
Test Case Data

D.1 Overview

Contained in this appendix is the structural data for the wing test cases. Data for the
Turner-Martin-Weikel wing is presented first. Given next is the data for the HSCT wing.

D.2 Turner-Martin-Weikel Wing

Figure D.1 shows a finite element model of the Turner-Martin-Weikel (T-M-W) wing
(LIV194). Figure D.2 illustrates details of the construction of the wing (TMW64). Depth,
skin thickness, spar web thickness, and spar cap area are all constant. The wing is made
totally from aluminum having the following material properties:

E=105E6; v=0.3 ;p=0.11bfin’

Figure D.1: FEM Model of the T-M-W Wing
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Figure D.2: T-M-W Wing Construction
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D.3 HSCT Wing

Figure D.3 shows the ELFINI finite element model of the Boeing HSCT candidate
wing. The wing is symmetric about the mid-plane with the depth distribution for the

upper skin given in inches by
h = 25.0-0.03097243y

The wing skins are composed of composite material layers with the following material

properties:
E, = 36.2E6 psi; E, = 1.4E6 psi; v =0.29; Gy, =.666E6 psi; p = 0.1 Ib/in®

The inboard upper and lower wing skins are each made of 20 sets of (0/90/45/-45) lami-
nate where ply orientation is referenced to the inboard spar lines. The same construction
is used for the outer wing where the plies are oriented with respect to the outer wing spar
lines. The thickness of each ply is 0.0037 in. Spar and rib webs are made of the same
material using 4 sets of (0/90/45/-45) laminate where orientation is referenced from the
mid-plane (LSB93).

Ris

Figure D.3: ELFINI Model of HSCT Wing
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Spar and rib caps have a constant area of 0.267 in%. They are made of composite

material with the following properties:

E = 14.0E6 psi; v =0.46;

p =0.1 1b/in®

Table D.1 lists the vertical spring coefficients used at points along the root to represent

fuselage stiffness along the side of body rib (LSB93). Linear springs with a coefficient of

2.0E10 1b/in are used along the root to impose zero v, displacement. Rotational springs
with coefficients of 1.0E16 in-Ib/rad along the root at y=83 in. and 1.25E16 in-lb/rad along
the carry through root are used to impose zero , displaceincnt. One spring with a coeffi-
cient of 1.0E10 is used at the rear inboard point of the wing carry through to resist u, dis-

placement.

Table D.1: Root Springs Representing Fuselage

Stiffness Along Side of Body Rib

Spring # X (in) ks (Ib/in) Spring # x (in) ks (Ib/in)
1 1393.27 3257 17 1939.82 20127
2 1428.43 3572 18 1975.02 23397
3 1463.58 3917 19 2010.22 30295
4 1498.74 4351 20 2045.22 39460
5 1533.90 4850 21 2080.22 48539
6 1569.06 5396 22 2115.22 59351
7 1604.22 6035 23 2150.22 73546
8 1631.22 6589 24 2177.95 85157
9 1658.22 7202 25 2205.68 108019
10 1693.42 8137 26 2238.72 120000
11 1728.62 9525 27 2269.05 171571
12 1763.82 10359 28 2299.38 173602
13 1799.02 11650 29 2329.71 169070
14 1834.22 13267 30 2360.04 162117
15 1869.42 15174 31 2390.37 149298
16 1904.62 17423 32 2420.70 100000




Appendix E:
CONNECT Program Information

E.1 Overview

This appendix briefly describes the code developed and used in this work. Program
subroutines are listed with a description of their purpose. The program structure is out-

lined with a description of the main program variables.

E.2 Program Subroutines

CONNECT, the main program, is written in Fortran. Following is a list of the sup-

porting subroutines grouped according to their purpose.

Matrix Preparation:
MTXSKN - prepares matrices for FSDPT skin and spar stiffness calculations

MTXRIB - prepares matrices for FSDPT rib stiffness calculations
MTXSWB - prepares matrices for FSDPT spar web calculations
MTXRWB - prepares matrices for FSDPT rib web calculations
MTXMAS - prepares displacement matrices for FSDPT mass calculations
MTXCORE - prepares matrices for FSDPT equivalent core calculations

Stiffness Matrix Evaluation:

SKIN - evalutes stiffness matrix contributions for a single FSDPT skin layer

SPRCAP - evaluates stiffness matrix contributions for a single FSDPT spar

RIBCAP - evaluates stiffness matrix contributions for a single FSDPT rib

SPRWEB - evaluates stiffness matrix contributions for a single FSDPT spar web
layer

RIBWEB - evaluates stiffness matrix contributions for a single FSDPT spar web
layer

SKINO - evaluates stiffness matrix contributions for a single CPT skin layer

CORE - evaluates stiffness matrix contributions for an equivalent core




158

SPNG1G - evaluates stiffness matrix contributions for a FSDPT zone attached to
ground at a point via springs

SPNG11 - evaluates stiffness matrix contributions for the spring connection
of 2 FSDPT zones at a point

SPNG10 - evaluates the stiffness matrix contributions for the spring connection

of a CPT zone to a FSDPT zone at a point

Mass Matrix Evaluation:

MSKIN - evaluates mass matrix contributions for a single FSDPT skin layer

MSPRCAP - evaluates mass matrix contributions for a single FSDPT spar

MRIBCAP - evaluates mass matrix contributions for a single FSDPT rib cap

MWEB - evaluates mass matrix contributions for a single FSDPT spar or rib
web layer

MCONC - evaluates mass matrix contribution for a single FSDPT concentrated
mass

MSKINO - evaluates mass matrix contributions for a single CPT skin layer

Integral Table Generation:

TABSRF - generates integral table for a single panel geometry
GMTRY - used in TABSREF to calculate panel geometry parameters
INTGSP - generates integral table for a single spar

INTGRB - generates integral table for a single rib

Skyline Linear Solver:

SKYFAC - factorizes global stiffness matrix
SKYFAC - solves for static generalized displacements
Eigensolution:

EIGZF - solves eigenvalue problem for natural frequencies and mode shapes




E.3 Program Structure

Phase 1: Initialization
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All input parameters are set within the main code and stored in arrays. No data is read

from file. To avoid numerical ill-conditioning, all geometric parameters may be shifted

and scaled to fit into a unit square. All other parameters with length dimensions must also

be scaled for consistency. Following is a list and description of array variables with their

index descriptors.

idzone(zone#)
ngl(zone#)...nq5(zone#)

mgq 1 x(term#,zone#)...
...mq5x(term#,zone#)

mq ly(term#,zone#)...
...mqSy(term#,zone#)

scale(zone#)

xshft(zone#)

yshft(zone#)

npanel(zone#)

xyplan(coord#,panel#,zone#) -

pnlh(panel#,zone#)
nlayr(panel#,zone#)
ntterm(layer#,panel#,zone#)
t(term#,layer#,panel#,zone#)
mtx(trm#,layr#,pnl#,zone#)
mty(trm#,layr#,pnl#,zone#)
skbeta(layr#,pnl#,zone#)

nhterm(h series#,zone#)
h(term#,h#,zone#)

mhx (term#,h#,zone#)
mhy(term#,h#,zone#)

identifies CPT (0) or FSDPT (1) zone

# of displacement terms for u,, vo, Y., Y,, W, respectively;
(w from CPT zone is treated as w, from FSDPT zone)

x powers for displacement polynomials

y powers for displacement polynomials
zone scaling factor

zone x coordinate shift value

zone y coordinate shift value

# of panels in zone

panel geometry coordinates

panel depth distribution (% series) tag

# of skin layer in panel

# of thickness distribution terms in skin layer
layer thickness distribution coefficient

x powers of layer thickness distribution

y powers of layer thickness distribution

skin layer fiber orientation from x axis

# of terms in depth distribution (h series)
depth distribution (h series) coefficient
x powers of depth distribution

y powers of depth distribution




spyl,spyr,spxl,
spxr(spap#,zone#) -
sprh(spar#,zone#) -

sparea(term#,spar#,zone#)

rbyLrbyr,yrib,rbxfl,rbxfr
rbxal,rbxar(rib#,zone#) -
ribh(rib#,zone#) -

rbarea(term#,spar#,zone#) -

npnts(zone#) -
pntxyz(xyz#,point#,zone#) -
pnth(point#,zone#) -

wbspr(term#,spr web#,zone#)-
twbspr(trm#,ly#,spwb#,zn#) -
bwbspr(lyr#,spwb#,zn#) -

wbrib(term#,rib web#,zone#) -
twbrib(trm#,lyr#,rbwb#,zn#) -
bwbrib(lyr#,rbwb#,zn#) -

cnctn(zone#,zone#) -

nspring(zone#,zone#) -
xattl,xattr,yattl,
yattr(lor2,zone#,zone#) -

ksprng(trm#,sprng#,zn#,zn#) -

ncmass(zone#) -
cmpoint(cmass#,zone#) -

cmass(xyz#,cmass#,zone#) -

nlconc(zone#,load case#)
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spar geometry coordinates
spar depth distribution tag

spar cap area

rib geometry coordinates
rib depth distribution tag

rib cap area

# of attach points in zone
attach point geometry
attach point depth distribution tag

idntifies spar caps associated with spar web
spar web layer tickness coefficient

fiber orientation of spar web layer

idntifies rib caps associated with rib web
rib web layer thickness coefficient
fiber orientation of rib web layer

zone connection tag: 0-not connected, 1-connected
(ground connection when zone number are equal)

# of spring used for zone connection

attach line geometry of zones being connected

spring stiffness coefficients corresponding to k;...ks
# of concentrated masses in zone
concentated mass point tag

concentrated mass coefficient

# of concentrated force loads




qconc(ld#,xyz#,zn#,ldcase#) -
idconc(ld#,xyz#,zn#,ldcase#) -

nlpol(panel#,zone#,1dcase#)
gpol(trm#,xyz# 1d#,pnl#,
zn# ldcase#)
mgpolx(term#)
mqpoly(term#)

noutx(panel#,zone#)
nouty(panel#,zone#)
outx(point#,panel#,zone#)
outy(point#,panel#,zone#)
yleft(panel#,zone#)
yright(panel#,zone#)
pnplrnt(panel#,zone#)

noutspr(zone#)
outspr(point#,zone#)
sprprot(spar#,zone#)

noutrib(zone#)
outrib(point#,zone#)
ribprnt(rib#,zone#)

qskl11, gsk12,
qsk22, gsk66

qwbll, qwb12,
qwb22, qw66

qOsk11, qOsk12,
q0sk22, q0sk66

modcap

modOcap

densk

]
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concentrated force load coefficient
concentrated load point tag
# of distributed pressure loads

distributed load coefficient
x powers of distributed loads
y powers of distributes loads

number of panel output points in x direction
number of panel output points in y direction

x direction output grid coordinates

y direction output grid coordinates

left y coordinate of output grid on wing panel
right y coordinate of output grid on wing panel
panel output tag: 0-no print, 1-print

number of spar output points
spar output grid coordinates

spar output tag: 0-no print, 1-print

number of rib output points
rib output grid coordinates
rib output tag: 0-no print, 1-print

In addition to these, material property variables are also assigned:

FSDPT skin constitutive matrix values

FSDPT spar and rib web constitutive matrix values

CPT skin constitutive matrix values
FSDPT spar and rib cap modulus
CPT spar and rib cap modulus
FSDPT skin density
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denwb - FSDPT spar and rib web density
denOsk - CPT skin density
dencap - FSDPT spar and rib cap density
denOcap - CPT spar and rib cap density

Phase 2: Calculations

A) Integral Table Assembly: The following integral table arrays are assembled.

aintmn(x power,y power,
panel#,zone#) - panel integral table
spintmn(x power,y power,
spar#,zone#) - spar integral table
rbintmn(x power,y power,
rib #,zone#) - rib integral table

B) Stiffness Matrix Assembly: Here first subroutines are called to prepare the needed
strain matrices. Each strain matrix from the FSDPT formulation is stored in 3 arrays: one

for coefficients, one for x powers, and one for y powers. The arrays are defined as follows:

ea,eax,eay(row#,col#,zone#) - lst FSDPT skin and spar strain matrix [Ro]
eb,ebx,eby(row#,col#,zone#) - 2nd FSDPT skin and spar strain matrix [R,]

el,elx,ely(row#,col#,zone#) - 1st FSDPT rib strain matrix [¥]
e2,e2x,e2y(row#,col#,zone#) - 2nd FSDPT rib strain matrix [Y,]

esa,esax,esay(rwi,col#,zn#) - 1st FSDPT spar web strain matrix [W]
2nd FSDPT spar web strain matrix [W,]

esb,esbx,esby(rw#,col#,zn#)

era,erax,eray(rw#,col#,zn#) - 1st FSDPT rib web strain matrix [F)]
erb.erbx,erby(rwi#,col#,zn#) - 2nd FSDPT rib web strin matrix [F]

eec.eecx,eecy(rw#,col#,zn#) - Equivalent core strain matrix [W]
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Next the subroutines which calculate the stiffness contributions of each wing component
are called. Since the stiffness matrix is symmetric, only the upper triangular portion need
be stored. Formatting of the SKYLINE solver requires that this upper triangular matrix be
stored in a vector. This requires a vector of length Ng,,,*(Ng,,,+1)/2. Stiffness matrix
terms are stored column by column in the vector array: stif(term#). Only skin contribu-

tions are included for a CPT zone in this program.

C) Loads Assembly: Here the load vector is assembled and stored in the array:

gload(term#,load case#)

D) Static Solution: Here the subroutines for factorizing the stiffness matrix and solving
the linear system of equations are called. The solution generalized displacements are

stored in the array: qdisp(term#,load case#).

E) Mass Matrix Assembly: Here first a subroutine is called to prepare the needed dis-
placement matrices. Each displacement matrix from the FSDPT formulation is stored in 3
arrays as the strain matrices are in stiffness matrix assembly. These arrays are defined as

follows:

s0,50x,s0y(row#,col#,zone#) - st displacement matrix [S,]
sl,s1x,sly(rowd#,col#,zone#) - 2nd displacement matrix [S;]

Next the subroutines which calculate the mass contributions of each wing component are
called. The mass matrix is also symmetric and thus stored in the same format as the stiff-
ness matrix in the vector array: mass(term#). Only skin contributions are included for a

CPT zone in this program.

F) Eigensolution: Here the eigenvalue problem involving mass and stiffness is solved.
Natural frequencies are sorted by increasing size and stored in the array: eigsort(freq#).
Corresponding generalized modal displacements are stored in the array:

gmode(term#,mode#).




Phase 3: Output
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Displacement, stress, and mode shape output is calculated at specified grid points and

stored in the following arrays:

dsppnl(disp#,point#,panel#,
zone#, load case#) -
dspspr(disp#,point#,spar#
zone#,load case#) -
dsprib(disp#,point#,panel#,
zone#,load case#) -
strpnl(stress#,point# layer#,
panel#,zone#,load case#) -
strspr(point#,spar#,zone#,
load case#) -
strrib(point#,rib#,zone#,
load case#) -
mddsppnl(disp#,point#,
panel#,zone#,mode#) -
mddspspr(disp#,point#,
spar#,zone#,mode#) -
mddsprib(disp#,point#
rib#.zone#,mode#) -

panel displacements

spar displacements

rib displacements

panel stresses (3 in x-y system, 3 in fiber axis system)
spar stress

rib stress

panel mode shape displacements

spar mode shape displacements

rib mode shape displacemeﬁts

Output is printed for each panel, spar, and rib selected.




